Randomly Dispersed Coated Composites Study by Statistical Approach and Numerical Homogenization Method

Article Preview

Abstract:

The aim of this work is the computation of effective elastic properties of 3D 3-phase random heterogeneous coated materials. For that, a new expression of the integral range for 3-phase random coated heterogeneous materials is used. The computation is achieved using a representative microstructure with non-overlapping inclusions. Numerical simulations is used under periodic boundary conditions (PBC) and kinematic uniform boundary conditions (KUBC) prescribed over Representative Volume Element (RVE). The obtained effective elastic properties are compared with different analytical models as Hashin and Shtrikman bounds and the n+1 phase model. Using the statistical methods, a new extension of the integral range for 3-phase coated materials is proposed.

You might also be interested in these eBooks

Info:

Pages:

33-42

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. Mathematical and physical sciences, A241, 1957, 376–396.

DOI: 10.1098/rspa.1957.0133

Google Scholar

[2] Z. Hashin, The elastic moduli of heterogeneous materials, Journal of Applied Mechanics. 29, 1962, 143-150.

DOI: 10.1115/1.3636446

Google Scholar

[3] R.M. Christensen, K.H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27 (4), 1979, 315-330.

DOI: 10.1016/0022-5096(79)90032-2

Google Scholar

[4] E. Hervé and A. Zaoui. Modelling the effective behaviour of nonlinear matrix-inclusion composites. European Journal of Mechanics - A/Solids, 9, 1990, 505-515.

Google Scholar

[5] E. Hervé, A. Zaoui. Inclusion-based micromechanical modelling. International Journal of Engineering Science. 31, 1993, 1–10.

Google Scholar

[6] E. Hervé, A. Zaoui, Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science. 33 (10), 1995, 1419–1433.

DOI: 10.1016/0020-7225(95)00008-l

Google Scholar

[7] H. Moussaddy, D. Therriault and M. Lévesque, Assessment of existing and introduction of a new and robust efficient definition of the representative volume element, International Journal of Solids and Structures, 50, 2013, 3817-3828.

DOI: 10.1016/j.ijsolstr.2013.07.016

Google Scholar

[8] J. Talbot, P. Schaap, G. Tatjus, Random sequential addition of hard spheres, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 72:6, 1991, 1397-1406.

DOI: 10.1080/00268979100100981

Google Scholar

[9] E. Ghossein and M. Lévesque, A comprehensive validation of analytical homogenization models: The case of ellipsoidal particles reinforced composites, Mechanics of Materials, 75, 2014, 135-150.

DOI: 10.1016/j.mechmat.2014.03.014

Google Scholar

[10] A. A. Gusev, Representative volume element size for elastic composites: a numerical study. Journal of the Mechanics and Physics of Solids, 45, 1997, 1449-1459.

DOI: 10.1016/s0022-5096(97)00016-1

Google Scholar

[11] H. Altendorf and D. Jeulin, Random-walk-based stochastic modeling of three-dimensional fiber systems. Physical Review E, 83, 2011, 041804.

DOI: 10.1103/physreve.83.041804

Google Scholar

[12] http://www.zset-software.com/.

Google Scholar

[13] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. Journal of Solids and Structures. 40, 2003, 3647–3679.

DOI: 10.1016/s0020-7683(03)00143-4

Google Scholar

[14] D. Jeulin, Caractérisation Morphologique et modèles de Structures Aléatoires, Homogénéisation en mécanique des matériaux (tome1). Hermes, France, (2001).

Google Scholar

[15] Y. Djebara, A. El Moumen, T. Kanit, S. Madani and A. Imad, Modeling of the effect of particles size, particles distribution and particles number on mechanical properties of polymer-clay nano-composites: numerical homogenization versus experimental results, Composites Part B, 86,2016, 135-142.

DOI: 10.1016/j.compositesb.2015.09.034

Google Scholar

[16] M.S. Boutaani, S. Madani, K Fedaoui, T. Kanit, Evaluation of effective mechanical properties of complex multiphase materials with finite element method, U.P.B. Sci. Bull., Series D, 79, Iss. 3, (2017).

Google Scholar

[17] A. El Moumen, A. Imad, T. Kanit, E. Hilali, H. El Minor, A multiscale approach and microstructure design of the elastic composite behavior reinforced with natural particles. Composites Part B: Engineering. 66, 2014, 247-254.

DOI: 10.1016/j.compositesb.2014.05.008

Google Scholar

[18] A. El Moumen, T. Kanit, A. Imad, H., El Minor, Effect of overlapping inclusions on effective elastic properties of composites. Mechanics Research Communications. 53, 2013, 24-30.

DOI: 10.1016/j.mechrescom.2013.07.007

Google Scholar

[19] A. El Moumen, T. Kanit, A. Imad, H., El Minor, Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches. Mechanics of Materials. 83, 2015, 1-16.

DOI: 10.1016/j.mechmat.2014.12.008

Google Scholar

[20] L. Chaibainou, M. S. Boutaani, K. Fedaoui, M. S. Chebbah, Evaluation of thermal expansion of (Al-SiC) material using homogeneization method coupled to finite element method, U.P.B. Sci. Bull., Series D, 81, Iss. 4, (2019).

Google Scholar

[21] E. Ghossein and M. Lévesque, A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites, International Journal of Solids and Structures, 49 (11-12), 2012, 1387-1398.

DOI: 10.1016/j.ijsolstr.2012.02.021

Google Scholar

[22] M. Pahlavan, H. Moussaddy, E. Ghossein. 2013. Prediction of Elastic Properties in Polymer-Clay Nanocomposites: Analytical Homogenization Methods and 3D Finite Element Modeling. Computational Materials Science.

DOI: 10.1016/j.commatsci.2013.06.029

Google Scholar

[23] J. Dirrenberger, S. Forest, D. Jeulin, Computational Homogenization of Architectured Materials, Architectured Materials in Nature and Engineering, 282, (2019).

DOI: 10.1007/978-3-030-11942-3_4

Google Scholar

[24] Z. Hashin, Assessment of the self-consistent scheme approximation: conductivity of particulate composites. J. Compos. Mater. 2(3), 1968, 284–300.

DOI: 10.1177/002199836800200302

Google Scholar

[25] R.A. Fisher, The correlation between relatives on the supposition of Mendelian inheritance, Philosophical Transactions of the Royal Society of Edinburgh, 52, 1918, 399-433.

DOI: 10.1017/s0080456800012163

Google Scholar