[1]
A.E. Khrulev, Repair of engines of foreign cars, Publishing House Za Rulem, Moscow (1999).
Google Scholar
[2]
A.N. Krutilin, M.I. Kurbatov and M.I. Kurbatova, Working conditions and basic requirements for the liner material of the cylinder block, Foundry production and metallurgy. 2-1 (34) (2005) 107-109.
Google Scholar
[3]
G. Barbezat, H. Luscher, Verschleisschutz im Motorenbau, Technica (Suisse). 23(1998) 54-56.
Google Scholar
[4]
E. Lugscheider, C. Wolff, Innenbeschichtung von Aluminium - Motorblocken mittels PVD-Technik, Galvanotechnik. 7 (1998) 2310-2319.
Google Scholar
[5]
G.E. Thompson, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films. 297, 1-2 (1997) 192-201.
DOI: 10.1016/s0040-6090(96)09440-0
Google Scholar
[6]
T. He, Y. Wang, Y. Zhang, T. Xu and T. Liu, Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater, Corr. Sci. 51(8) (2009) 1757-1761.
DOI: 10.1016/j.corsci.2009.04.027
Google Scholar
[7]
Y. Suzuki, K. Kawahara, T. Kikuchi, R.O. Suzuki and S. Natsui, Corrosion-resistant porous alumina formed via anodizing aluminum in etidronic acid and its pore-sealing behavior in boiling water, J. Electrochem. Soc. 166 (2019) C261-C269.
DOI: 10.1149/2.0221912jes
Google Scholar
[8]
W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 114, 15 (2014) 7487-7556.
DOI: 10.1021/cr500002z
Google Scholar
[9]
H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, Square and triangular nanohole array architectures in anodic alumina, Adv. Mater. 3 (2001) 189-192.
DOI: 10.1002/1521-4095(200102)13:3<189::aid-adma189>3.0.co;2-z
Google Scholar
[10]
S.Z. Kure-Chu, K. Osaka, H. Yashiro, K. Wada, H. Segawa and S. Inoue, Facile fabrication of ordered multi-tiered hierarchical porous alumina nanostructures with multiple and fractional ratios of pore interval toward multifunctional nanomaterials, ECS J. Solid State Sci. and Technol. 5 (2016), pp. P285-P292.
DOI: 10.1149/2.0231605jss
Google Scholar
[11]
L. Wen, R. Xu, Y. Mi and Y. Lei, Multiple nanostructures based on anodized aluminium oxide templates, Nat. Nanotechnol. 12 (2017) 244-250.
DOI: 10.1038/nnano.2016.257
Google Scholar
[12]
G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs and J.P. Celis Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid J. Electrochem. Soc. 149 (2002) D97-D103.
DOI: 10.1149/1.1481527
Google Scholar
[13]
H. Masuda, K. Yada and A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys. 37 (1998) L1340.
DOI: 10.1143/jjap.37.l1340
Google Scholar
[14]
T. Kikuchi, K. Kunimoto, H. Ikeda, D. Nakajima, R.O. Suzuki and Sh. Natsui, Fabrication of anodic porous alumina via galvanostatic anodizing in alkaline sodium tetraborate solution and their morphology, Journal of Electroanalytical Chemistry. 846 (2019) 113152.
DOI: 10.1016/j.jelechem.2019.05.034
Google Scholar
[15]
W.C. Gu, C.H. Lv, H. Chen, G.L. Chen, W.R. Feng and S.Z. Yang, Characterization of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy, Mater Sci Eng A. 447 (1-2) (2007) 158-162.
DOI: 10.1016/j.msea.2006.09.004
Google Scholar
[16]
F. Keller, M.S. Hunter and D.L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc. 100 (1953) 411-419.
DOI: 10.1149/1.2781142
Google Scholar
[17]
H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a 2 step replication of honeycomb structures of anodic alumina Science. 268 (1995) 1466-1468.
DOI: 10.1126/science.268.5216.1466
Google Scholar
[18]
K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch and U. Gösele Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization ACS Nano, 2 (2008) 302-310.
DOI: 10.1021/nn7001322
Google Scholar
[19]
A. Jagminas, D. Bigeliene, I. Mikulskas and R. Tomasiunas, Growth peculiarities of aluminum anodic oxide at high voltages in diluted phosphoric acid, J Cryst Growth. 233(3) (2001) 591-598.
DOI: 10.1016/s0022-0248(01)01625-6
Google Scholar
[20]
W. Lee, R. Ji, U. Gösele and K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat. Mater. 5 (2006) 741-747.
DOI: 10.1038/nmat1717
Google Scholar
[21]
O. Jessensky, F. Müller and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina Appl. Phys. Lett., 72 (10) (1998) 1173-1175.
DOI: 10.1063/1.121004
Google Scholar
[22]
C. Sun, J. Luo, L. Wu and J. Zhang, Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm, ACS Appl. Mater. Interfaces. 2 (5) (2010) 1299-1302.
DOI: 10.1021/am1001713
Google Scholar
[23]
I. Mohammadi, Sh. Ahmadi and A. Afshar, Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings, Mater. Chem. and Phys. 183 (1) (2016) 490-498.
DOI: 10.1016/j.matchemphys.2016.09.006
Google Scholar
[24]
G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures , Electrochimica Acta. 54 (14) (2009) 3683-3691.
DOI: 10.1016/j.electacta.2009.01.046
Google Scholar
[25]
Sh. Li, Y. Li, Sh. Jin, J. Wu, Zh. Li, X. Hu and Zh. Ling, Fabrication of crystallized porous anodic aluminum oxide under ultra-high anodization voltage, J. Electrochem. Soc. 165 (13) (2018) E623.
DOI: 10.1149/2.0141813jes
Google Scholar
[26]
S. Shingubara, K. Morimoto, H. Sakaue and T. Takahagi, Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte, Electrochem. Solid-State Lett. 7(3) (2004) E15.
DOI: 10.1149/1.1644353
Google Scholar
[27]
P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes and C.E. Blanco-Pinzon, A tracer study of porous anodic alumina, Electrochem. and Solid State Lett. 9 (2006) B47.
DOI: 10.1149/1.2335938
Google Scholar
[28]
S.A. Pyachin, A.A. Burkov and M.A. Pugachevsky, Regularities of the formation of oxides on the surface of metals under the influence of electrical discharges, Physics and chemistry of material processing. 2 (2011) 51-59.
Google Scholar
[29]
E.I. Dodulad, Influence of the configuration of electrodes on the emission properties of a high-current low-inductive vacuum spark discharge: theses for the degree of Candidate of Physics and Mathematics: 01.04.08, Moscow (2013) 123.
Google Scholar
[30]
N.F. Kolenchin, V.N. Kuskov and P.N. Shadrina, New Technologies of Anodizing Components of Oil and Gas Industry Equipment Made of Aluminum Alloys, Applied Mechanics and Materials. 770 (2015) 121-125.
DOI: 10.4028/www.scientific.net/amm.770.121
Google Scholar
[31]
V.N. Kuskov, N.F. Kolenchin, Prospects for the replacement of steel parts for oil and gas equipment by aluminium parts, Energy Production and Management in the 21st Century. 2 (2014) 801-805.
DOI: 10.2495/eq140742
Google Scholar
[32]
B.G. Ershov, P.A. Morozov, Kinetics of ozone decomposition in water, the influence of pH and temperature, Journal of Physical Chemistry. 83(8) (2009) 1295–1299.
DOI: 10.1134/s0036024409080093
Google Scholar
[33]
V.N. Kuskov, N.F. Kolenchin, P.N. Shadrina and A.V. Safronov, Structure and properties of anodic oxide film on aluminum and D16 alloy, Basic research. 11-3 (2012) 625-629.
Google Scholar
[34]
V.A. Shutilov, Foundations of ultrasound physics, Leningrad University Press, Leningrad (1980).
Google Scholar
[35]
V.I. Vigdorovich, N.F. Kolenchin, Anodizing of aluminum alloys in an ozonized sulfuric acid electrolyte by applying an ultrasonic field, Theory and Practice of Corrosion Protection. 2(84) (2017) 51-59.
DOI: 10.17277/amt.2017.02.pp.057-066
Google Scholar
[36]
S.M. Davidson, M. Wessling and A. Mani, On the Dynamical Regimes of Pattern-Accelerated Electroconvection, Scientific Reports. 6 (2016) 22505.
DOI: 10.1038/srep22505
Google Scholar