Variability of Surface Strengthening of Aluminum Cylinders of Internal Combustion Engines

Article Preview

Abstract:

This article discusses the ways of intensification of the oxidation process with the formation of surface properties necessary to increase the service life of one of the parts of an internal combustion engine - a cylinder made of cast aluminum alloy. A brief overview of existing technologies for hardening the aluminum surface is presented. Environmentally friendly options are proposed for using the potential of processes that have accumulated energy within an electrolytic cell by activating the interelectrode gap and forming an oxide with desired properties. The main difference from the existing model approaches of oxide formation lies in the parallel excitation of the main participant in the process, oxygen, in order to dominate it over other, oxygen-containing donors. Ways of using the energy of cavitation phenomena due to acoustic resonance in an electrolytic solution are proposed. Redistribution of the field potential by replacing a flat cathode with a pointed one changed the conductivity conditions in the interelectrode gap as a result of the electroconvective action. The structure of the oxide layer, phase changes, and physical properties confirming the originality of oxide coatings have been investigated.

You might also be interested in these eBooks

Info:

Pages:

12-22

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.E. Khrulev, Repair of engines of foreign cars, Publishing House Za Rulem, Moscow (1999).

Google Scholar

[2] A.N. Krutilin, M.I. Kurbatov and M.I. Kurbatova, Working conditions and basic requirements for the liner material of the cylinder block, Foundry production and metallurgy. 2-1 (34) (2005) 107-109.

Google Scholar

[3] G. Barbezat, H. Luscher, Verschleisschutz im Motorenbau, Technica (Suisse). 23(1998) 54-56.

Google Scholar

[4] E. Lugscheider, C. Wolff, Innenbeschichtung von Aluminium - Motorblocken mittels PVD-Technik, Galvanotechnik. 7 (1998) 2310-2319.

Google Scholar

[5] G.E. Thompson, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films. 297, 1-2 (1997) 192-201.

DOI: 10.1016/s0040-6090(96)09440-0

Google Scholar

[6] T. He, Y. Wang, Y. Zhang, T. Xu and T. Liu, Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater, Corr. Sci. 51(8) (2009) 1757-1761.

DOI: 10.1016/j.corsci.2009.04.027

Google Scholar

[7] Y. Suzuki, K. Kawahara, T. Kikuchi, R.O. Suzuki and S. Natsui, Corrosion-resistant porous alumina formed via anodizing aluminum in etidronic acid and its pore-sealing behavior in boiling water, J. Electrochem. Soc. 166 (2019) C261-C269.

DOI: 10.1149/2.0221912jes

Google Scholar

[8] W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 114, 15 (2014) 7487-7556.

DOI: 10.1021/cr500002z

Google Scholar

[9] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, Square and triangular nanohole array architectures in anodic alumina, Adv. Mater. 3 (2001) 189-192.

DOI: 10.1002/1521-4095(200102)13:3<189::aid-adma189>3.0.co;2-z

Google Scholar

[10] S.Z. Kure-Chu, K. Osaka, H. Yashiro, K. Wada, H. Segawa and S. Inoue, Facile fabrication of ordered multi-tiered hierarchical porous alumina nanostructures with multiple and fractional ratios of pore interval toward multifunctional nanomaterials, ECS J. Solid State Sci. and Technol. 5 (2016), pp. P285-P292.

DOI: 10.1149/2.0231605jss

Google Scholar

[11] L. Wen, R. Xu, Y. Mi and Y. Lei, Multiple nanostructures based on anodized aluminium oxide templates, Nat. Nanotechnol. 12 (2017) 244-250.

DOI: 10.1038/nnano.2016.257

Google Scholar

[12] G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs and J.P. Celis Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid J. Electrochem. Soc. 149 (2002) D97-D103.

DOI: 10.1149/1.1481527

Google Scholar

[13] H. Masuda, K. Yada and A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys. 37 (1998) L1340.

DOI: 10.1143/jjap.37.l1340

Google Scholar

[14] T. Kikuchi, K. Kunimoto, H. Ikeda, D. Nakajima, R.O. Suzuki and Sh. Natsui, Fabrication of anodic porous alumina via galvanostatic anodizing in alkaline sodium tetraborate solution and their morphology, Journal of Electroanalytical Chemistry. 846 (2019) 113152.

DOI: 10.1016/j.jelechem.2019.05.034

Google Scholar

[15] W.C. Gu, C.H. Lv, H. Chen, G.L. Chen, W.R. Feng and S.Z. Yang, Characterization of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy, Mater Sci Eng A. 447 (1-2) (2007) 158-162.

DOI: 10.1016/j.msea.2006.09.004

Google Scholar

[16] F. Keller, M.S. Hunter and D.L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc. 100 (1953) 411-419.

DOI: 10.1149/1.2781142

Google Scholar

[17] H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a 2 step replication of honeycomb structures of anodic alumina Science. 268 (1995) 1466-1468.

DOI: 10.1126/science.268.5216.1466

Google Scholar

[18] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch and U. Gösele Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization ACS Nano, 2 (2008) 302-310.

DOI: 10.1021/nn7001322

Google Scholar

[19] A. Jagminas, D. Bigeliene, I. Mikulskas and R. Tomasiunas, Growth peculiarities of aluminum anodic oxide at high voltages in diluted phosphoric acid, J Cryst Growth. 233(3) (2001) 591-598.

DOI: 10.1016/s0022-0248(01)01625-6

Google Scholar

[20] W. Lee, R. Ji, U. Gösele and K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat. Mater. 5 (2006) 741-747.

DOI: 10.1038/nmat1717

Google Scholar

[21] O. Jessensky, F. Müller and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina Appl. Phys. Lett., 72 (10) (1998) 1173-1175.

DOI: 10.1063/1.121004

Google Scholar

[22] C. Sun, J. Luo, L. Wu and J. Zhang, Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm, ACS Appl. Mater. Interfaces. 2 (5) (2010) 1299-1302.

DOI: 10.1021/am1001713

Google Scholar

[23] I. Mohammadi, Sh. Ahmadi and A. Afshar, Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings, Mater. Chem. and Phys. 183 (1) (2016) 490-498.

DOI: 10.1016/j.matchemphys.2016.09.006

Google Scholar

[24] G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures , Electrochimica Acta. 54 (14) (2009) 3683-3691.

DOI: 10.1016/j.electacta.2009.01.046

Google Scholar

[25] Sh. Li, Y. Li, Sh. Jin, J. Wu, Zh. Li, X. Hu and Zh. Ling, Fabrication of crystallized porous anodic aluminum oxide under ultra-high anodization voltage, J. Electrochem. Soc. 165 (13) (2018) E623.

DOI: 10.1149/2.0141813jes

Google Scholar

[26] S. Shingubara, K. Morimoto, H. Sakaue and T. Takahagi, Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte, Electrochem. Solid-State Lett. 7(3) (2004) E15.

DOI: 10.1149/1.1644353

Google Scholar

[27] P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes and C.E. Blanco-Pinzon, A tracer study of porous anodic alumina, Electrochem. and Solid State Lett. 9 (2006) B47.

DOI: 10.1149/1.2335938

Google Scholar

[28] S.A. Pyachin, A.A. Burkov and M.A. Pugachevsky, Regularities of the formation of oxides on the surface of metals under the influence of electrical discharges, Physics and chemistry of material processing. 2 (2011) 51-59.

Google Scholar

[29] E.I. Dodulad, Influence of the configuration of electrodes on the emission properties of a high-current low-inductive vacuum spark discharge: theses for the degree of Candidate of Physics and Mathematics: 01.04.08, Moscow (2013) 123.

Google Scholar

[30] N.F. Kolenchin, V.N. Kuskov and P.N. Shadrina, New Technologies of Anodizing Components of Oil and Gas Industry Equipment Made of Aluminum Alloys, Applied Mechanics and Materials. 770 (2015) 121-125.

DOI: 10.4028/www.scientific.net/amm.770.121

Google Scholar

[31] V.N. Kuskov, N.F. Kolenchin, Prospects for the replacement of steel parts for oil and gas equipment by aluminium parts, Energy Production and Management in the 21st Century. 2 (2014) 801-805.

DOI: 10.2495/eq140742

Google Scholar

[32] B.G. Ershov, P.A. Morozov, Kinetics of ozone decomposition in water, the influence of pH and temperature, Journal of Physical Chemistry. 83(8) (2009) 1295–1299.

DOI: 10.1134/s0036024409080093

Google Scholar

[33] V.N. Kuskov, N.F. Kolenchin, P.N. Shadrina and A.V. Safronov, Structure and properties of anodic oxide film on aluminum and D16 alloy, Basic research. 11-3 (2012) 625-629.

Google Scholar

[34] V.A. Shutilov, Foundations of ultrasound physics, Leningrad University Press, Leningrad (1980).

Google Scholar

[35] V.I. Vigdorovich, N.F. Kolenchin, Anodizing of aluminum alloys in an ozonized sulfuric acid electrolyte by applying an ultrasonic field, Theory and Practice of Corrosion Protection. 2(84) (2017) 51-59.

DOI: 10.17277/amt.2017.02.pp.057-066

Google Scholar

[36] S.M. Davidson, M. Wessling and A. Mani, On the Dynamical Regimes of Pattern-Accelerated Electroconvection, Scientific Reports. 6 (2016) 22505.

DOI: 10.1038/srep22505

Google Scholar