Spark Plasma Synthesis and Tribological Behaviour of Ti-Ni-TiCN Nanocomposite

Article Preview

Abstract:

The conventional method of producing titanium components introduces defects into the matrix of the materials, thus resulting in poor microstructure, tribological properties and performance of the materials in service. To overcome these challenges, a Ti-Ni-TiCN nanocomposite was developed using the novel spark plasma sintering (SPS) technique. The morphology and the phases present in the initial powders and the sintered specimen were investigated using the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The dry sliding wear behaviour of the sintered samples was studied at ambient temperature by ball-on-disc tests, under an applied normal load of 25 N. The presence of unreacted TiCN, in-situ formed TiN and Ti2Ni intermetallic phases were revealed by the SEM/EDS analysis and confirmed by the XRD results. The developed titanium matrix nanocomposite displayed a much lower coefficient of friction and wear resistance than the CP-Ti. The strong interface between the matrix and the reinforcements prevents the reinforcements from pulling out of the matrix. Ti-Ni-TiCN nanocomposite showed the predominance of abrasive wear while mixed wear mode was observed, in the CP-Ti. The developed material has the capacity to replace CP-Ti and perform admirably in a tribo-system.

You might also be interested in these eBooks

Info:

Pages:

141-149

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. L. Rominiyi, M. B. Shongwe, E. N. Ogunmuyiwa, B. J. Babalola, P. F. Lepele, P. A. Olubambi, Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, J. Mater. Chem. Phys. 240 (2020) p.122130.

DOI: 10.1016/j.matchemphys.2019.122130

Google Scholar

[2] S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite,, Composites Part A: App. Sci. Manufac. 48 (2013) 57-66.

DOI: 10.1016/j.compositesa.2012.12.005

Google Scholar

[3] S. Fouvry, C. Paulin, S. Deyber, Impact of contact size and complex gross–partial slip conditions on Ti–6Al–4V/Ti–6Al–4V fretting wear, J. Tribol. Inter., 42 (2009) 461-474.

DOI: 10.1016/j.triboint.2008.08.005

Google Scholar

[4] P. J. Blau, B. C. Jolly, J. Qu, W. H. Peter, C. A. Blue, Tribological investigation of titanium-based materials for brakes, J. Wear 263 (2007) 1202-1211.

DOI: 10.1016/j.wear.2006.12.015

Google Scholar

[5] S. Chauhan, K. Dass, Dry Sliding Wear Behaviour of Titanium (Grade 5) Alloy by Using Response Surface Methodology, J. Adv. Tribol. 2013 (2013) 1-9.

DOI: 10.1155/2013/272106

Google Scholar

[6] S. Kumar, T. S. N. S. Narayanan, S. Ganesh Sundara Raman, S. K. Seshadri, Surface modification of CP-Ti to improve the fretting-corrosion resistance: Thermal oxidation vs. anodizing, J. Mater. Sci. Eng.: C, 30 (2010) 921-927.

DOI: 10.1016/j.msec.2010.03.024

Google Scholar

[7] A. R. Hamad, J. H. Abboud, F. M. Shuaeib, K. Y. Benyounis, Surface hardening of commercially pure titanium by laser nitriding: Response surface analysis, J. Adv. Eng. Software 41 (2010) 674-679.

DOI: 10.1016/j.advengsoft.2009.10.010

Google Scholar

[8] K. G. Budinski, Tribological properties of titanium alloys, J. Wear 151 (1991) 203-217.

DOI: 10.1016/0043-1648(91)90249-t

Google Scholar

[9] I. M. Hutchings, Tribology: Friction and Wear of Engineering Materials, 1st ed., 338 Euston Road, London NW13BH: Edward Arnold (1992).

Google Scholar

[10] Y. L. Qin, L. Geng, D. R. Ni, Dry sliding wear behavior of titanium matrix composites hybrid-reinforced by in situ TiBw and TiCp, J. Compo. Mater. 46 (2012) 2637-2645.

DOI: 10.1177/0021998311417645

Google Scholar

[11] J.-S. Kim, K.-M. Lee, D.-H. Cho, Y.-Z. Lee, Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates, J. Wear 301 (2013) 562-568.

DOI: 10.1016/j.wear.2012.12.041

Google Scholar

[12] O. E. Falodun, B. A. Obadele, S. R. Oke, O. O. Ige, P. A. Olubambi, M. L. Lethabane, et al., Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN, J. Trans. Nonferrous Met. Soc. China, 28 (2018) 47-54.

DOI: 10.1016/s1003-6326(18)64637-0

Google Scholar

[13] D. E. Alman J. A. Hawk, The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites, J. Wear 225-229 (1999) 629-639.

DOI: 10.1016/s0043-1648(99)00065-4

Google Scholar

[14] B. Basu, K. Balani, Advanced structural ceramics. American Ceramic Society, USA: John Wiley & Sons, Inc (2011).

Google Scholar

[15] F. Romero, V. Amigó, M. D. Salvador, E. Martinez, Mechanical and Microstructural Properties of Titanium Matrix Composites Reinforced by TiN Particles, Mate. Sci. Forum 534-536 (2007) 825-828.

DOI: 10.4028/www.scientific.net/msf.534-536.825

Google Scholar

[16] B.-J. Choi, I. L. Y. Kim, Y.-Z. Lee, Y.-J. Kim, Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites, Wear 318 (2014) 68-77.

DOI: 10.1016/j.wear.2014.05.013

Google Scholar

[17] A. L. Rominiyi, M. B. Shongwe, L. C. Tshabalala, E. N. Ogunmuyiwa, S. O. Jeje, B. J. Babalola, P. A. Olubambi, Spark plasma sintering of Ti–Ni–TiCN composites: Microstructural characterization, densification and mechanical properties, J. Alloys Compd. 848 (2020) p.156559.

DOI: 10.1016/j.jallcom.2020.156559

Google Scholar

[18] A. L. Rominiyi, M. B. Shongwe, N. Maledi, B. J. Babalola, P. A. Olubambi, Synthesis, microstructural and phase evolution in Ti–2Ni and Ti–10Ni binary alloys consolidated by spark plasma sintering technique, Int. J. Adv. Manufac. Technol. 104 (2019) 1041-1049.

DOI: 10.1007/s00170-019-03950-5

Google Scholar

[19] A. L. Rominiyi, M. B. Shongwe, N. B. Maledi, S. O. Jeje, B. J. Babalola, P. F. Lepele, Influence of sintering temperature on densification, microstructure and mechanical properties of Ti-6Ni alloy developed via spark plasma sintering, IOP Conference Series: Mater. Sci. Eng. 655 (2019) p.012017.

DOI: 10.1088/1757-899x/655/1/012017

Google Scholar

[20] H. Izui, K. Hattori, Y. Komiya, Dry sliding wear resistance characterization of titanium matrix composites reinforced with titanium carbonitrides, Mech. Eng. J. (2020) 1-12.

DOI: 10.1299/mej.20-00029

Google Scholar

[21] H. Izui, K. Toen, S. Kamegawa, Y. Komiya, Dry sliding wear behavior of TiB/Ti and TiC/Ti composites, Mech. Eng. J. 5 (2018) 17-00523.

DOI: 10.1299/mej.17-00523

Google Scholar

[22] H. Attar, S. Ehtemam-Haghighi, D. Kent, I. V. Okulov, H. Wendrock, M. Bӧnisch, et al., Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting, Mater. Sci. Eng.: A, 688 (2017) 20-26.

DOI: 10.1016/j.msea.2017.01.096

Google Scholar

[23] I. Hutchings, P. Shipway, Wear by hard particles, in I. Hutchings, P. Shipway (Eds.), Tribology (Second Edition),ed: Butterworth-Heinemann, 2017, pp.165-236.

DOI: 10.1016/b978-0-08-100910-9.00006-4

Google Scholar