[1]
A. L. Rominiyi, M. B. Shongwe, E. N. Ogunmuyiwa, B. J. Babalola, P. F. Lepele, P. A. Olubambi, Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, J. Mater. Chem. Phys. 240 (2020) p.122130.
DOI: 10.1016/j.matchemphys.2019.122130
Google Scholar
[2]
S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite,, Composites Part A: App. Sci. Manufac. 48 (2013) 57-66.
DOI: 10.1016/j.compositesa.2012.12.005
Google Scholar
[3]
S. Fouvry, C. Paulin, S. Deyber, Impact of contact size and complex gross–partial slip conditions on Ti–6Al–4V/Ti–6Al–4V fretting wear, J. Tribol. Inter., 42 (2009) 461-474.
DOI: 10.1016/j.triboint.2008.08.005
Google Scholar
[4]
P. J. Blau, B. C. Jolly, J. Qu, W. H. Peter, C. A. Blue, Tribological investigation of titanium-based materials for brakes, J. Wear 263 (2007) 1202-1211.
DOI: 10.1016/j.wear.2006.12.015
Google Scholar
[5]
S. Chauhan, K. Dass, Dry Sliding Wear Behaviour of Titanium (Grade 5) Alloy by Using Response Surface Methodology, J. Adv. Tribol. 2013 (2013) 1-9.
DOI: 10.1155/2013/272106
Google Scholar
[6]
S. Kumar, T. S. N. S. Narayanan, S. Ganesh Sundara Raman, S. K. Seshadri, Surface modification of CP-Ti to improve the fretting-corrosion resistance: Thermal oxidation vs. anodizing, J. Mater. Sci. Eng.: C, 30 (2010) 921-927.
DOI: 10.1016/j.msec.2010.03.024
Google Scholar
[7]
A. R. Hamad, J. H. Abboud, F. M. Shuaeib, K. Y. Benyounis, Surface hardening of commercially pure titanium by laser nitriding: Response surface analysis, J. Adv. Eng. Software 41 (2010) 674-679.
DOI: 10.1016/j.advengsoft.2009.10.010
Google Scholar
[8]
K. G. Budinski, Tribological properties of titanium alloys, J. Wear 151 (1991) 203-217.
DOI: 10.1016/0043-1648(91)90249-t
Google Scholar
[9]
I. M. Hutchings, Tribology: Friction and Wear of Engineering Materials, 1st ed., 338 Euston Road, London NW13BH: Edward Arnold (1992).
Google Scholar
[10]
Y. L. Qin, L. Geng, D. R. Ni, Dry sliding wear behavior of titanium matrix composites hybrid-reinforced by in situ TiBw and TiCp, J. Compo. Mater. 46 (2012) 2637-2645.
DOI: 10.1177/0021998311417645
Google Scholar
[11]
J.-S. Kim, K.-M. Lee, D.-H. Cho, Y.-Z. Lee, Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates, J. Wear 301 (2013) 562-568.
DOI: 10.1016/j.wear.2012.12.041
Google Scholar
[12]
O. E. Falodun, B. A. Obadele, S. R. Oke, O. O. Ige, P. A. Olubambi, M. L. Lethabane, et al., Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN, J. Trans. Nonferrous Met. Soc. China, 28 (2018) 47-54.
DOI: 10.1016/s1003-6326(18)64637-0
Google Scholar
[13]
D. E. Alman J. A. Hawk, The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites, J. Wear 225-229 (1999) 629-639.
DOI: 10.1016/s0043-1648(99)00065-4
Google Scholar
[14]
B. Basu, K. Balani, Advanced structural ceramics. American Ceramic Society, USA: John Wiley & Sons, Inc (2011).
Google Scholar
[15]
F. Romero, V. Amigó, M. D. Salvador, E. Martinez, Mechanical and Microstructural Properties of Titanium Matrix Composites Reinforced by TiN Particles, Mate. Sci. Forum 534-536 (2007) 825-828.
DOI: 10.4028/www.scientific.net/msf.534-536.825
Google Scholar
[16]
B.-J. Choi, I. L. Y. Kim, Y.-Z. Lee, Y.-J. Kim, Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites, Wear 318 (2014) 68-77.
DOI: 10.1016/j.wear.2014.05.013
Google Scholar
[17]
A. L. Rominiyi, M. B. Shongwe, L. C. Tshabalala, E. N. Ogunmuyiwa, S. O. Jeje, B. J. Babalola, P. A. Olubambi, Spark plasma sintering of Ti–Ni–TiCN composites: Microstructural characterization, densification and mechanical properties, J. Alloys Compd. 848 (2020) p.156559.
DOI: 10.1016/j.jallcom.2020.156559
Google Scholar
[18]
A. L. Rominiyi, M. B. Shongwe, N. Maledi, B. J. Babalola, P. A. Olubambi, Synthesis, microstructural and phase evolution in Ti–2Ni and Ti–10Ni binary alloys consolidated by spark plasma sintering technique, Int. J. Adv. Manufac. Technol. 104 (2019) 1041-1049.
DOI: 10.1007/s00170-019-03950-5
Google Scholar
[19]
A. L. Rominiyi, M. B. Shongwe, N. B. Maledi, S. O. Jeje, B. J. Babalola, P. F. Lepele, Influence of sintering temperature on densification, microstructure and mechanical properties of Ti-6Ni alloy developed via spark plasma sintering, IOP Conference Series: Mater. Sci. Eng. 655 (2019) p.012017.
DOI: 10.1088/1757-899x/655/1/012017
Google Scholar
[20]
H. Izui, K. Hattori, Y. Komiya, Dry sliding wear resistance characterization of titanium matrix composites reinforced with titanium carbonitrides, Mech. Eng. J. (2020) 1-12.
DOI: 10.1299/mej.20-00029
Google Scholar
[21]
H. Izui, K. Toen, S. Kamegawa, Y. Komiya, Dry sliding wear behavior of TiB/Ti and TiC/Ti composites, Mech. Eng. J. 5 (2018) 17-00523.
DOI: 10.1299/mej.17-00523
Google Scholar
[22]
H. Attar, S. Ehtemam-Haghighi, D. Kent, I. V. Okulov, H. Wendrock, M. Bӧnisch, et al., Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting, Mater. Sci. Eng.: A, 688 (2017) 20-26.
DOI: 10.1016/j.msea.2017.01.096
Google Scholar
[23]
I. Hutchings, P. Shipway, Wear by hard particles, in I. Hutchings, P. Shipway (Eds.), Tribology (Second Edition),ed: Butterworth-Heinemann, 2017, pp.165-236.
DOI: 10.1016/b978-0-08-100910-9.00006-4
Google Scholar