[1]
B.-R. Höhn, K. Michaelis, and H.-P. Otto, Influence of immersion depth of dip lubricated gears on power loss, bulk temperature and scuffing load carrying capacity,, International Journal of Mechanics and Materials in Design, vol. 4, pp.145-156, (2008).
DOI: 10.1007/s10999-007-9045-z
Google Scholar
[2]
D. T. Redda, T. Nakanishi, and G. Deng, Surface Durability of Developed Cr-Mo-Si Steel under Rolling-Sliding Contact,, Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 2, pp.214-221, (2008).
DOI: 10.1299/jamdsm.2.214
Google Scholar
[3]
H. Mohrbacher, Metallurgical concepts for optimized processing and properties of carburizing steel,, Advances in Manufacturing, vol. 4, pp.105-114, (2016).
DOI: 10.1007/s40436-016-0142-9
Google Scholar
[4]
P. Deshpande, B. Gautham, A. Cecen, S. Kalidindi, A. Agrawal, and A. Choudhary, Application of statistical and machine learning techniques for correlating properties to composition and manufacturing processes of steels,, in Proceedings of the 2nd world congress on integrated computational materials engineering (ICME), 2013, pp.155-160.
DOI: 10.1007/978-3-319-48194-4_25
Google Scholar
[5]
M. E. Haque and K. Sudhakar, ANN back-propagation prediction model for fracture toughness in microalloy steel,, International Journal of Fatigue, vol. 24, pp.1003-1010, (2002).
DOI: 10.1016/s0142-1123(01)00207-9
Google Scholar
[6]
K. Sudhakar and G. Murty, Fracture toughness correlation with microstructure and other mechanical properties in near-eutectoid steel,, Bulletin of Materials Science, vol. 21, pp.241-245, (1998).
DOI: 10.1007/bf02744976
Google Scholar
[7]
T. Nakanishi, D. T. Redda, And G. Deng, Gsd-09 Influences Of Surface Texture And Lubricating Oil Temperature On Surface Failure Of Rolling-Sliding Contact In The Case Of Case-Carburized Alloy Steels (Gear Strength And Durability, Including Gear Materials And Heat Treatment Techniques),, in The Proceedings of the JSME international conference on motion and power transmissions 2009, 2009, pp.350-355.
DOI: 10.1299/jsmeimpt.2009.350
Google Scholar
[8]
D. T. Redda, T. Nakanishi, and G. Deng, Softening behavior of hardness and surface fatigue of rolling-sliding contact in the case of developed alloy steels,, Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 3, pp.85-92, (2009).
DOI: 10.1299/jamdsm.3.85
Google Scholar
[9]
R. Causton and T. Cimino, High Density Processing of Cr-Mn P/M Steels,, Advances in Powder Metallurgy and Particulate Materials, vol. 5, pp.89-89, (1994).
Google Scholar
[10]
P. King and B. Lindsley, Capabilities of two chromium powder metallurgy steels for high performance applications at conventional sintering temperatures,, in Materials science forum, 2007, pp.653-656.
Google Scholar
[11]
S. Maity, N. Ballal, G. Goldhahn, and R. Kawalla, Development of low alloy titanium and niobium microalloyed ultrahigh strength steel through electroslag refining,, Ironmaking & Steelmaking, vol. 35, pp.379-386, (2008).
DOI: 10.1179/174328107x203895
Google Scholar
[12]
S. Maity, N. Ballal, G. Goldhahn, and R. Kawalla, Development of low alloy ultrahigh strength steel,, Ironmaking & Steelmaking, vol. 35, pp.228-240, (2008).
DOI: 10.1179/174328108x271493
Google Scholar
[13]
D. Kim, J. Lee, M. S. Lee, H. J. Son, N. Reddy, M. Kim, et al., Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels,, Materialia, p.100699, (2020).
DOI: 10.1016/j.mtla.2020.100699
Google Scholar
[14]
Q. Hancheng, X. Bocai, L. Shangzheng, and W. Fagen, Fuzzy neural network modeling of material properties,, Journal of Materials Processing Technology, vol. 122, pp.196-200, (2002).
DOI: 10.1016/s0924-0136(02)00019-5
Google Scholar
[15]
B. Podgornik, I. Belič, V. Leskovšek, and M. Godec, Tool Steel Heat Treatment Optimization Using Neural Network Modeling,, Metallurgical and Materials Transactions A, vol. 47, pp.5650-5659, (2016).
DOI: 10.1007/s11661-016-3723-0
Google Scholar
[16]
S. Hosseini, A. Zarei-Hanzaki, M. Y. Panah, and S. Yue, ANN model for prediction of the effects of composition and process parameters on tensile strength and percent elongation of Si–Mn TRIP steels,, Materials Science and Engineering: A, vol. 374, pp.122-128, (2004).
DOI: 10.1016/j.msea.2004.01.007
Google Scholar
[17]
M. Paulic, D. Mocnik, M. Ficko, J. Balic, T. Irgolic, and S. Klancnik, Intelligent system for prediction of mechanical properties of material based on metallographic images,, Tehnički vjesnik, vol. 22, pp.1419-1424, (2015).
Google Scholar
[18]
M. Hadhri, A. El Ouafi, and N. Barka, Prediction of the hardness profile of an AISI 4340 steel cylinder heat-treated by laser-3D and artificial neural networks modelling and experimental validation,, Journal of Mechanical Science and Technology, vol. 31, pp.615-623, (2017).
DOI: 10.1007/s12206-017-0114-4
Google Scholar
[19]
L. Xu, J. Xing, S. Wei, Y. Zhang, and R. Long, Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks,, Materials & design, vol. 28, pp.1425-1432, (2007).
DOI: 10.1016/j.matdes.2006.03.022
Google Scholar
[20]
M. Yamada, L. Yan, R. Takaku, S. Ohsaki, K. Miki, K. Kajikawa, et al., Effects of alloying elements on the hardenability, toughness and the resistance of stress corrosion cracking in 1 to 3 mass% Cr low alloy steel,, Isij International, vol. 54, pp.240-247, (2014).
DOI: 10.2355/isijinternational.54.240
Google Scholar
[21]
Y. Ge and K. Wang, Influence of Microalloying Element on the Microstructure and Mechanical Properties of 34CrNiMo6 Steel for Wind Turbine Main Shaft,, Advances in Materials Science and Engineering, vol. 2018, (2018).
DOI: 10.1155/2018/2672385
Google Scholar
[22]
S. Maity and R. Kawalla, Ultrahigh strength steel: development of mechanical properties through controlled cooling,, Heat Transfer–Engineering Applications, pp.309-336, (2011).
DOI: 10.5772/26514
Google Scholar
[23]
M. S. Bhat, Microstructure and mechanical properties of AISI 4340 steel modified with aluminum and silicon,, California Univ., Berkeley (USA). Lawrence Berkeley Lab.(1977).
DOI: 10.2172/7215788
Google Scholar
[24]
L. Cavaleri, P. G. Asteris, P. P. Psyllaki, M. G. Douvika, A. D. Skentou, and N. M. Vaxevanidis, Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks,, Applied Sciences, vol. 9, p.2788, (2019).
DOI: 10.3390/app9142788
Google Scholar
[25]
M. I. Lourakis, A brief description of the Levenberg-Marquardt algorithm implemented by levmar,, Foundation of Research and Technology, vol. 4, pp.1-6, (2005).
Google Scholar
[26]
A. Khalid, A. Sundararajan, I. Acharya, and A. I. Sarwat, Prediction of li-ion battery state of charge using multilayer perceptron and long short-term memory models,, in 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 2019, pp.1-6.
DOI: 10.1109/itec.2019.8790533
Google Scholar
[27]
I. A. B. A. Aziz, D. M. N. B. D. Idris, M. H. A. B. Hassan, and M. F. B. Basrawi, Finite element analysis of impact energy on spur gear,, in MATEC Web of Conferences, 2018, p.06011.
DOI: 10.1051/matecconf/201822506011
Google Scholar
[28]
J. Krawczyk, J. Pacyna, and P. Bała, Fracture toughness of steels with nickel content in respect of carbide morphology,, Materials Science and Technology, vol. 31, pp.795-802, (2015).
DOI: 10.1179/1743284715y.0000000023
Google Scholar
[29]
C. Sidoroff, M. Perez, P. Dierickx, and D. Girodin, Advantages and shortcomings of retained austenite in bearing steels: a review,, in Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings, ed: ASTM International, (2015).
DOI: 10.1520/stp158020140081
Google Scholar