[1]
A.S. Okouzi, Simulation and Optimization of the Batch Process in a Rectangular Passive Greenhouse Dryer, A Ph.D. Thesis in Industrial Engineering, University of Benin, Benin City, (2019).
Google Scholar
[2]
Z. Pakowski, A.S. Mujumdar, Basic process calculations and simulations in drying, Fundamental aspects, in: A.S. Mujumdar (Ed.), Handbook of Industrial Drying, third ed., CRC Press, Taylor and Francis Group, Boca Raton, 2015, pp.52-75.
DOI: 10.1201/9781420017618.ch3
Google Scholar
[3]
C. Ratti, A.S. Mujumdar, Solar drying of foods: Modelling and numerical simulation, Solar Energy. 60 (1997) 151–157.
DOI: 10.1016/s0038-092x(97)00002-9
Google Scholar
[4]
J.O. Olokor, Adaptation of Solar Tent Dryer for Fish Preservation: Implications for Forest Resources Conservation around Kainji Lake. A Ph.D. Thesis in Geography, Federal University of Technology, Minna, (2004).
Google Scholar
[5]
Z. He, X. Zhang, G. Xie, Product quality improvement through response surface methodology: A Case Study. Proceedings of International Conference on Technology Innovation and Industrial Management, (TIIM) 29-31 May, Thailand, 2013, pp. S4-120-130.
Google Scholar
[6]
A. Alaeddini, A. Murat, K. Yang, B. Ankenman, An efficient adaptive sequential methodology for expensive response surface optimization, Quality and Reliability Engineering International. 29 (2013) 799–817.
DOI: 10.1002/qre.1432
Google Scholar
[7]
D. Jain, G.N. Tiwari, Effect of greenhouse on crop drying under natural and forced convection II: Thermal modelling and experimental validation, Energy Conversion and Management. 45(17) (2004) 2777–2793.
DOI: 10.1016/j.enconman.2003.12.011
Google Scholar
[8]
J.K. Afriyie, H. Rajakaruna, M.A.A. Nazha, F.K. Forson, Simulation and optimization of the ventilation in a chimney-dependent solar crop dryer, Solar Energy. 85 (2011) 1560-1573.
DOI: 10.1016/j.solener.2011.04.019
Google Scholar
[9]
J.K. Afriyie, M.A.A. Nazha, H. Rajakaruna, F.K. Forson, Experimental investigations of a chimney-dependent solar crop dryer, Renewable Energy. 34(1) (2009) 217–222.
DOI: 10.1016/j.renene.2008.04.010
Google Scholar
[10]
O. Prakash, A. Kumar, ANFIS modelling of natural convection greenhouse drying system for jaggery, International Journal of Sustainable Energy. (2012) 1-20.
DOI: 10.1080/14786451.2012.724070
Google Scholar
[11]
I.K. Yeboah, Application of MATLAB-based solar dryer for cocoa drying, Recent Researches in Applied Computers and Computational Science. ACACOS' 12 Proceedings of the 11th World Scientific Engineering Academy Society (WSEAS), International Conference on Applied Computer and Applied Computation Science, (2012) 252-258.
Google Scholar
[12]
C.B. Maia, A.G. Ferreira, L. Cabezas-Gómez, S.M. Hanriot, T.O. Martins, Simulation of the airflow inside a hybrid dryer, International Journal of Recent Research and Applied Studies (IJRRAS). 10(3) (2012) 382-389.
Google Scholar
[13]
M. Manoj, A. Manivannan, Simulation of solar dryer utilizing green house effect for cocoa bean drying, International Journal of Advanced Engineering Technology IJAET. IV(II) (2013) 24-27.
Google Scholar
[14]
S. Lokeswaran, M. Eswaramoorthy, An experimental analysis of a solar greenhouse: Computational fluid dynamics (CFD) validation, Energy Sources: Recovery, Utilization, and Environmental Effects. 35(21) (2013) 2062-2071.
DOI: 10.1080/15567036.2010.532195
Google Scholar
[15]
O. Prakash, A. Kumar, Application of artificial neural network for the prediction of jaggery mass during drying inside the natural convection greenhouse dryer, International Journal of Ambient Energy. 35(4) (2013) 186-192.
DOI: 10.1080/01430750.2013.793455
Google Scholar
[16]
R. Kumar, V. Gupta, R. Varshney, Numerical simulation of solar greenhouse dryer using computational fluid dynamics, International Journal of Research and Scientific Innovation (IJRSI). IV(VI) (2017) 111-115.
Google Scholar
[17]
T.K. Sahu, V. Gupta, Experimental analysis of open, simple and modified greenhouse dryers for drying potato flakes under forced convection, Int. Journal of Engineering Research and Application. 6(7) ( Part -4) (2016) 56-60.
Google Scholar
[18]
A.S. Okouzi, A.O.A. Ibhadode, A.I. Obanor, J.O. Eze, Computational fluid dynamics simulation of the batch process in a rectangular passive greenhouse dryer, International Journal of Engineering Sciences & Research Technology. 9(4) (2020) 95-107.
DOI: 10.4028/www.scientific.net/jera.56.145
Google Scholar
[19]
K.T. Ulrich, S.D. Eppinger, Product Design and Development, sixth ed., Irwin/McGraw Hill, New York, (2015).
Google Scholar
[20]
C. Hirsch, Numerical Computation of Internal and External Flows. Fundamentals of Computational Fluid Dynamics, second ed., Vol. 1, Butterworth-Heinemann, New York, (2007).
Google Scholar
[21]
H. Bullinger, R. Breining, M. Braun, Virtual reality for industrial engineering, applications for immersive virtual environments, in: G. Salvendy (Ed.), Handbook of Industrial Engineering, Technology and Operations Management, third ed., John Wiley, New York, 2001, pp.2496-2520.
DOI: 10.1002/9780470172339.ch96
Google Scholar
[22]
H. Bullinger, J. Warschat, J. Leyh, T. Cebulla, Planning and integration of product development, in: G. Salvendy (Ed.), Handbook of Industrial Engineering, Technology and Operations Management, third ed., John Wiley, New York, 2001, pp.1283-1295.
DOI: 10.1002/9780470172339.ch48
Google Scholar
[23]
F.L. Krause, K. Mertins, A. Edler, P. Heisig, I. Hoffmann, M. Helmke, Computer integrated technologies and knowledge management, in: G. Salvendy (Ed.), Handbook of Industrial Engineering, Technology and Operations Management, third ed., John Wiley, New York, 2001b, pp.177-226.
DOI: 10.1002/9780470172339.ch6
Google Scholar
[24]
A.C. Endres, Quality in research and development, in: J.M. Juran, A.B. Godfrey, R.E. Hoogstoel, E.G. Schilling (Eds.), Juran's Quality Handbook, fifth ed., McGraw-Hill, New York. (1999).
Google Scholar
[25]
Electronic Industries Alliance, EIA Standard Processes for Engineering a System. Government Electronics and Information Technology Association Engineering Department. ANSI/EIA-632-(1998).
Google Scholar
[26]
K. Ogata, System Dynamics, fourth ed., Pearson Prentice Hall, New Jersey, (2004).
Google Scholar
[27]
G. Van Straten, What can systems and control theory do for Agricultural Science, AUTOMATIKA: Časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije. 49 (2008) 105-117.
Google Scholar
[28]
S. Rajasekar, N. Meyyappan, D.G. Rao, A review on computation fluid dynamics studies in drying processes, Journal of Food Science Research, JOFSR. 1(1) (2016) 27-31.
Google Scholar
[29]
K. Pragati, H.K. Sharma, Concept of computational fluid dynamics (CFD) and its applications in food processing equipment design, Journal of Food Process Technology. 3(138) (2012) 7p.
DOI: 10.4172/2157-7110.1000138
Google Scholar
[30]
B. Xia, D. Sun, Applications of computational fluid dynamics (CFD) in the food industry: A review, Computers and Electronics in Agriculture. 34 (2002) 5–24.
DOI: 10.1016/s0168-1699(01)00177-6
Google Scholar
[31]
D.C. Montgomery, Design and Analysis of Experiments, eighth ed., John Wiley, New York, (2013).
Google Scholar
[32]
R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, third ed., John Wiley, New Jersey, (2009).
Google Scholar
[33]
Z. He, Y. Han, S. Zhao, S.H. Park, Product and process optimization design through design of experiments: A case study, Total Quality Management and Business Excellence. 20(1) (2009) 107-113.
DOI: 10.1080/14783360802614315
Google Scholar
[34]
S. Sefa-Dedeh, B. Cornelius, E. Sakyi-Dawson, E.O. Afoakwa, Application of response surface methodology for studying the quality characteristics of cowpea-fortified nixtamalized maize, Innovative Food Science and Emerging Technologies. 4(1) (2003) 109–119.
DOI: 10.1016/s1466-8564(02)00070-x
Google Scholar
[35]
V.L. Anderson, R.A. Mclean, Design of experiments for industrial engineers, in: G. Salvendy (Ed.), Handbook of Industrial Engineering, John Wiley, New York, (1982).
Google Scholar
[36]
S. Chatterjee, J.S. Simonoff, Handbook of Regression Analysis, John Wiley, New Jersey, (2013).
Google Scholar
[37]
J. Cohen, Multiple regression as a general data-analytic system, Psychological Bulletin. 70(6) (1968) 426-443.
DOI: 10.1037/h0026714
Google Scholar
[38]
J.K. Afriyie, A. Bart-Plange, Performance Investigation of a Chimney-Dependent Solar Crop Dryer for Different Inlet Areas with a Fixed Outlet Area, International Scholarly Research Network, ISRN Renewable Energy. (2012) 9p.
DOI: 10.5402/2012/194359
Google Scholar
[39]
G. Palermo, C. Silvano, V. Zaccaria, E. Rigoni, C. Kavka, A. Turco, G. Mariani, Response surface modeling for design space exploration of embedded systems, in: C. Silvano (Ed.), Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, Springer Science+Business Media, LLC, 2011, pp.75-92.
DOI: 10.1007/978-1-4419-8837-9_4
Google Scholar
[40]
ANSYS, ANSYS 15.0 Design Exploration User's Guide, ANSYS Inc., Canonsburg, (2013).
Google Scholar
[41]
J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson, Multivariate Data Analysis, seventh ed., Pearson Prentice Hall, New Jersey, (2010).
Google Scholar
[42]
R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye, Probability and Statistics for Engineers and Scientists, ninth ed., Pearson Education Inc., New Jersey, (2012).
Google Scholar
[43]
D.C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers, fifth ed., John Wiley, New York, (2011).
Google Scholar