[1]
J. Tien and J. Hong, Smart Lead Acid Battery Charging/Dscharging Management System,. United States Patent US 7683576 B2, 23 March (2010).
Google Scholar
[2]
K. Bao and L. Jin, Study on SOC estimation algorithm of lithium-ion battery of electric vehicle,, Computer Engineering and Science, vol. 12, no. 34, (2012).
Google Scholar
[3]
F. Zhonga, H. Li, S. Zhong, Q. Zhong and C. Yin, An SOC estimation approach based on adaptive sliding modeobserver and fractional order equivalent circuit model forlithium-ion batteries,, Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2015, pp.127-144, (2015).
DOI: 10.1016/j.cnsns.2014.12.015
Google Scholar
[4]
X. Chen, W. Shen, Z. Cao and A. Kapoor, A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles,, Journal of Power Source, vol. 246, no. 2014, pp.667-678, (2014).
DOI: 10.1016/j.jpowsour.2013.08.039
Google Scholar
[5]
D. Duncan, A. M. Zungeru, M. Mmoloki Mangwala, B. Diarra, B. Mtengi, T. Semong and M. J. Chuma, Power-Efficient Hybrid Energy Storage System for Seismic Nodes,, Journal of Engineering, vol. 2020, no. 2020, p.21, (2020).
DOI: 10.1155/2020/3652848
Google Scholar
[6]
N. Bourgoine, Harvest Energy from a Single Photovoltaic Cell,, Journal Analog Innovation, vol. 21, no. 1, p.6, (2011).
Google Scholar
[7]
www.esands.com/Manuals/SEIS/Kelunji_Echo_Handbook.pdf,, [Online].
Google Scholar
[8]
www.guralp.com/documents/DAS-CER-0001.pdf,, [Online].
Google Scholar
[9]
M. Coleman, C. K. Lee, C. Zhu and W. G. Hurley, State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries,, IEEE Transaction on Industrail Electronics, vol. 54, no. 5, p.2550, (2007).
DOI: 10.1109/tie.2007.899926
Google Scholar
[10]
B. Pattipati, B. Balasingam, G. V. Avvari, K. R. Pattipati and Y. Bar-Shalom, Open circuit voltage characterization of lithium-ion batteries,, Journal of Power Sources, vol. 269 , no. 2014, pp.317-333, (2014).
DOI: 10.1016/j.jpowsour.2014.06.152
Google Scholar
[11]
M. Danko, J. Adamec, M. Taraba and P. Drgona, Overview of batteries State of Charge estimation methods,, in 13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM 2019), High Tatras, Novy Smokovec, Bellevue, (2019).
DOI: 10.1016/j.trpro.2019.07.029
Google Scholar
[12]
M. E. V. Team, A Guide to Understanding Battery Specifications,, (2008).
Google Scholar
[13]
X. Dang, L. Yan, H. Jiang, X. Wua and H. Sun, Open-Circuit Voltage-based State of Charge Estimation of Lithium-ionpower Battery by Combining Controlled Auto-Regressive and Moving Average Modeling with Feedforward-Feedback Compensation Method,, Electrical Power and Energy Systems, vol. 90, no. 2017, p.27–36, (2017).
DOI: 10.1016/j.ijepes.2017.01.013
Google Scholar
[14]
Y. Dia, F. Auger, E. Schaeffer and M. Wahbeh, Estimating Lithium-Ion Battery State of Charge and Parameters Using a Continuous-Discrete Extended Kalman Filter,, Energies, vol. 10, no. 1075, pp.1-19, (2017).
DOI: 10.3390/en10081075
Google Scholar
[15]
H. R. Eichi and M. Chow, Modeling and analysis of battery hysteresis effects,, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, (2012).
DOI: 10.1109/ecce.2012.6342212
Google Scholar
[16]
A. Fasih, Modeling and Fault Diagnosis of Automotive Lead-Acid Batteries,, The Ohio State University Columbus, Columbus, (2006).
Google Scholar
[17]
M. G. Survey, Seismometer Site,.
Google Scholar
[18]
D. Shillington, Seismology as Performance Art,, Earth Institute Columbia University, Columbia , (2013).
Google Scholar
[19]
S. Minas, Importance of Seismic Activity for Communities and Businesses,, Applied Earth Sciences, Glendale, (2015).
Google Scholar
[20]
R. E. Brackenridge, F. J. Hernández-Molina, D. A. V. Stow and E. Llave, A Pliocene mixed contourite–turbidite system offshore the Algarve Margin, Gulf of Cadiz: Seismic response, margin evolution and reservoir implications,, ScienceDirect, vol. 46, no. 2013, pp.36-50, (2013).
DOI: 10.1016/j.marpetgeo.2013.05.015
Google Scholar
[21]
J. Havskov and G. Alguacil, Instrumentation in Earthquake Seismology, London: Springer, (2016).
Google Scholar
[22]
F. Yildiz, Potential Ambient Energy-Harvesting Sources and Techniques,, The Journal Technology Studies, vol. 35, no. 1, pp.40-48, (2009).
Google Scholar
[23]
W. Chang, The State of Charge Estimating Methods for Battery: A Review,, International Scholarly Research Notices, vol. 2013, no. 2013, p.7, (2013).
Google Scholar
[24]
C. Moriniaux, Lead Acid vs Lithium-ion Batteries,, Autonom Battery Intelligence, (2019).
Google Scholar
[25]
J. F. Araujo, L. V. Hartmann, M. Correa and A. M. N. Lima, Lead-Acid Battery Modeling and State of Charge,, in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, (2010).
DOI: 10.1109/apec.2010.5433666
Google Scholar
[26]
D. J. Deepti and V. Ramanarayanan, State of Charge of Lead Acid Battery,, in Proceedings of India International Conference on Power Electronics, (2006).
DOI: 10.1109/iicpe.2006.4685347
Google Scholar
[27]
Y. Jeong, Y. Cho, J. Ahn, S. Ryu and B. Lee, Enhanced Coulomb counting method with adaptive SOC reset time for estimating OCV,, in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, (2014).
DOI: 10.1109/ecce.2014.6953989
Google Scholar
[28]
F. Codecà, A. M. Savaresi and V. Manzoni, The mix estimation algorithm for battery State-of-Charge estimator- Analysis of the sensitivity to measurement errors,, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, Shanghai, (2009).
DOI: 10.1109/cdc.2009.5399759
Google Scholar
[29]
Z. Ma, M. X.J., W. J.X., J. Qiang and B. Zhuo, Ma ZL, Mao XJ, Wang JX, Qiang JX, Zhuo B. Research on SOC estimated strategy,, in IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, (2008).
DOI: 10.1109/vppc.2008.4677462
Google Scholar
[30]
F. Guo, G. Hu, P. Zhou, J. Hu and Y. Sai, State of charge estimation in electric vehicles at various ambient temperatures,, International Journal of Energy Research, vol. 2020, no. 44, pp.7357-7370, (2020).
DOI: 10.1002/er.5450
Google Scholar
[31]
Y. Xing, W. He, M. Pecht and K. H. Tsui, State of Charge Estimation of Lithium-ion Batteries using the Open-circuit Voltage at various Ambient Temperatures,, Applied Energy, vol. 113, no. 2014, p.106–115, (2014).
DOI: 10.1016/j.apenergy.2013.07.008
Google Scholar
[32]
B. University, Charging at High and Low Temperature,.
Google Scholar
[33]
C. Burgos, D. Saez, M. E. Orchard and R. Cardenas, Fuzzy modelling for the state-of-charge estimation of lead-acid Batteries,, Journal of Power Sources, vol. 274, no. 2015, pp.355-366, (2015).
DOI: 10.1016/j.jpowsour.2014.10.036
Google Scholar
[34]
T. Wu, M. Wang, Q. Xiao and X. Wang, The SOC Estimation of Power Li-Ion Battery Based on ANFIS Model,, Smart Grid and Renewable Energy, vol. 2012, no. 3, pp.51-55, (2012).
DOI: 10.4236/sgre.2012.31007
Google Scholar
[35]
Centre for Geodesy and Geodynamics, Toro, Nigeria.
Google Scholar
[36]
L. Wang and C. Lin, A Comparative Study on Open Circuit Voltage Models for Lithium-ion Batteries,, Chinese Journal of Mechanical Engineering, vol. 31, no. 2018, p.8, (2018).
DOI: 10.1186/s10033-018-0268-8
Google Scholar
[37]
PVeducation, Battery voltage and capacity in non-equilibrium,, PVeducation, (2019).
Google Scholar
[38]
D. Brunelli, D. Moser, L. Thiele and L. Benini, Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems,, IEEE Transactions on Circuits and Systems, vol. 56, no. 11, pp.2519-2528, (2009).
DOI: 10.1109/tcsi.2009.2015690
Google Scholar
[39]
X. Jiang, J. Polastre and D. E. Culler, Perpetual environmentally powered sensor networks,, in 4th ACM/IEEE International Conference on Information Processing in Sensor Networks, (2005).
DOI: 10.1109/ipsn.2005.1440974
Google Scholar
[40]
G. J. Yua, Y. S. Jung, J. Y. Choi and G. S. Kim, A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,, Solar Energy, vol. 76, no. 4, pp.455-463, (2004).
DOI: 10.1016/j.solener.2003.08.038
Google Scholar
[41]
F. Simjee and P. H. Chou, Everlast: Long-life, Supercapacitor-operated Wireless Sensor Node," in ISLPED,06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, (2006).
DOI: 10.1145/1165573.1165619
Google Scholar
[42]
C. B. Zhu, M. Coleman and W. G. Hurley, State of charge determination in a lead-acid battery: combined EMF estimation and Ah-balance approach,, in IEEE 35th Annual Power Electronics Specialists Conference, Aachen, (2004).
DOI: 10.1109/pesc.2004.1355409
Google Scholar
[43]
F. Huet, R. P. Nogueira, P. Lailler and L. Torcheux, Investigation ofthe high-frequency resistance of a lead-acid battery,, Journal of Power Sources, vol. 158, no. 2, p.1012–1018, (2006).
DOI: 10.1016/j.jpowsour.2005.11.026
Google Scholar
[44]
S. I. Kaka, Seismic noise study for a new seismic station,, Advances in Geosciences, vol. 34, no. 2013, pp.29-32, (2013).
DOI: 10.5194/adgeo-34-29-2013
Google Scholar
[45]
B. V. Chikate and Y. A. Sadawarte, The Factors Affecting the Performance of Solar Cell,, in IJCA Proceedings on International Conference on Advancements in Engineering and Technology, (2015).
Google Scholar
[46]
M. Tohidi, M. Sadeghi, S. R. Mousavi and S. A. Mireei, Artificial Neural Network Modeling of Process and Product Indices in deep bed Drying of Rough Rice,, Tubitak, vol. 36, no. 2012, pp.738-748, (2012).
DOI: 10.3906/tar-1106-44
Google Scholar
[47]
C. Cai, C. Du, Z. Liu and H. Zhang, Artificial Neural Network in Estimation of Battery State- of-Charge (SOC) with Nonconventional Input Variables Selected by Correlation Analysis,, in Proceedings of the First International Conference on Machine Learning and Cybernetics,, Beijing, (2002).
DOI: 10.1109/icmlc.2002.1167485
Google Scholar
[48]
A. Sendy, Polycrystalline vs Monocrystalline solar panels: Which is the best type, and why?,, SolarReviews, (2020).
Google Scholar