[1]
P. A. Gbadega and A. K. Saha, Electrical characteristics improvement of photovoltaic modules using two-diode model and its application under mismatch conditions,, in 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), 2019, pp.328-333.
DOI: 10.1109/robomech.2019.8704846
Google Scholar
[2]
M. P. Kazmierkowski, Renewable Energy Devices and Systems with Simulations in MATLAB and ANSYS [Book News],, IEEE Industrial Electronics Magazine, vol. 12, pp.80-83, (2018).
DOI: 10.1109/mie.2018.2827859
Google Scholar
[3]
L. Ming-Yu, Y. Zi-Long, W. Yi-Bo, and X. Hong-hua, Study on control strategy of energy storage system in photovoltaic microgrid,, in 2014 International Conference on Power System Technology, 2014, pp.3064-3070.
DOI: 10.1109/powercon.2014.6993558
Google Scholar
[4]
P. A. Gbadega and O. A. Balogun, Active and Reactive Power Droop Controller Design for Reliable and Optimal Control of Renewable-Based Micro-Grid,, in Advanced Engineering Forum, 2021, pp.111-136.
DOI: 10.4028/www.scientific.net/aef.41.111
Google Scholar
[5]
J. W. Zapata, T. A. Meynard, and S. Kouro, Partial power dc-dc converter for large-scale photovoltaic systems,, in 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), 2016, pp.1-6.
DOI: 10.1109/spec.2016.7846077
Google Scholar
[6]
A. Bidram and A. Davoudi, Hierarchical structure of microgrids control system,, IEEE Transactions on Smart Grid, vol. 3, pp.1963-1976, (2012).
DOI: 10.1109/tsg.2012.2197425
Google Scholar
[7]
K. Kobayashi, H. Matsuo, and Y. Sekine, Novel solar-cell power supply system using a multiple-input DC–DC converter,, IEEE Transactions on Industrial Electronics, vol. 53, pp.281-286, (2006).
DOI: 10.1109/tie.2005.862250
Google Scholar
[8]
H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. Hendrix, Family of multiport bidirectional DC–DC converters,, IEE Proceedings-Electric Power Applications, vol. 153, pp.451-458, (2006).
DOI: 10.1049/ip-epa:20050362
Google Scholar
[9]
N. Hatziargyriou, Microgrids Control Issues,, pp.25-80, (2014).
Google Scholar
[10]
Y.-M. Chen, S.-C. Hung, C.-S. Cheng, and Y.-C. Liu, Multiinput inverter for grid-connected hybrid PV/wind power system,, in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., 2005, pp.850-856.
DOI: 10.1109/apec.2005.1453081
Google Scholar
[11]
S. Bae and A. Kwasinski, Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources,, IEEE Transactions on smart grid, vol. 3, pp.1867-1876, (2012).
DOI: 10.1109/tsg.2012.2198498
Google Scholar
[12]
F. Nejabatkhah, Danyali, S., Hosseini, S.H., Sabahi, M. and Niapour, S.M, Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system. ,, IEEE Transactions on power electronics, 27(5), pp.2309-2324, (2011).
DOI: 10.1109/tpel.2011.2172465
Google Scholar
[13]
O. H. A. Shirazi, O. Onar, and A. Khaligh, A novel telecom power system,, in INTELEC 2008-2008 IEEE 30th International Telecommunications Energy Conference, 2008, pp.1-8.
DOI: 10.1109/intlec.2008.4664125
Google Scholar
[14]
F. Valenciaga, P. F. Puleston, and P. E. Battaiotto, Power control of a solar/wind generation system without wind measurement: A passivity/sliding mode approach,, IEEE Transactions on Energy Conversion, vol. 18, pp.501-507, (2003).
DOI: 10.1109/tec.2003.816602
Google Scholar
[15]
Y.-C. Liu and Y.-M. Chen, A systematic approach to synthesizing multi-input DC–DC converters,, IEEE Transactions on Power Electronics, vol. 24, pp.116-127, (2009).
DOI: 10.1109/tpel.2008.2009170
Google Scholar
[16]
D.-H. Lim, B.-S. Ko, and R.-Y. Kim, A Verification of Improved Distributed Control in DC Microgrid based on Hardware-in-the-loop Simulation,, in 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2019, pp.1-6.
DOI: 10.1109/acept.2018.8610845
Google Scholar
[17]
L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, Microgrid supervisory controllers and energy management systems: A literature review,, Renewable and Sustainable Energy Reviews, vol. 60, pp.1263-1273, (2016).
DOI: 10.1016/j.rser.2016.03.003
Google Scholar
[18]
O. Palizban, K. Kauhaniemi, and J. M. Guerrero, Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,, Renewable and Sustainable Energy Reviews, vol. 36, pp.428-439, (2014).
DOI: 10.1016/j.rser.2014.01.016
Google Scholar
[19]
P. A. Gbadega and A. K. Saha, Model-Based Receding Horizon Control of Wind Turbine System for Optimal Power Generation,, in Advanced Engineering Forum, 2021, pp.83-98.
DOI: 10.4028/www.scientific.net/aef.40.83
Google Scholar
[20]
M. S. Mahmoud, M. S. U. Rahman, and M.-S. Fouad, Review of microgrid architectures–a system of systems perspective,, IET Renewable Power Generation, vol. 9, pp.1064-1078, (2015).
DOI: 10.1049/iet-rpg.2014.0171
Google Scholar
[21]
J. H. Watts, Microturbines: a new class of gas turbine engine,, Global gas turbine news, vol. 39, pp.4-8, (1999).
Google Scholar
[22]
A. Alzahrani, M. Ferdowsi, P. Shamsi, and C. H. Dagli, Modeling and simulation of microgrid,, Procedia Computer Science, vol. 114, pp.392-400, (2017).
DOI: 10.1016/j.procs.2017.09.053
Google Scholar
[23]
H. Wen and R. Yang, Modeling and simulation of energy control strategies in AC Microgrid,, in 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2016, pp.1469-1474.
DOI: 10.1109/appeec.2016.7779734
Google Scholar
[24]
S. Heier, Grid integration of wind energy: onshore and offshore conversion systems: John Wiley & Sons, (2014).
DOI: 10.1002/9781118703274
Google Scholar
[25]
G. Stavrakakis and G. Kariniotakis, A general simulation algorithm for the accurate assessment of isolated diesel-wind turbines systems interaction. I. A general multimachine power system model,, IEEE transactions on Energy Conversion, vol. 10, pp.577-583, (1995).
DOI: 10.1109/60.464885
Google Scholar
[26]
Y. Zhu and K. Tomsovic, Development of models for analyzing the load-following performance of microturbines and fuel cells,, Electric Power Systems Research, vol. 62, pp.1-11, (2002).
DOI: 10.1016/s0378-7796(02)00033-0
Google Scholar
[27]
O. Tremblay and L.-A. Dessaint, Experimental validation of a battery dynamic model for EV applications,, World electric vehicle journal, vol. 3, pp.289-298, (2009).
DOI: 10.3390/wevj3020289
Google Scholar
[28]
S. Bae and A. Kwasinski, Maximum power point tracker for a multiple-input Ćuk dc-dc converter,, in INTELEC 2009-31st International Telecommunications Energy Conference, 2009, pp.1-5.
DOI: 10.1109/intlec.2009.5351942
Google Scholar
[29]
M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,, IEEE transactions on industry applications, vol. 46, pp.331-339, (2009).
DOI: 10.1109/tia.2009.2036550
Google Scholar
[30]
S.-K. Kim, J.-H. Jeon, C.-H. Cho, J.-B. Ahn, and S.-H. Kwon, Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer,, IEEE transactions on industrial electronics, vol. 55, pp.1677-1688, (2008).
DOI: 10.1109/tie.2007.907662
Google Scholar
[31]
K. Hussein, I. Muta, T. Hoshino, and M. Osakada, Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,, IEE Proceedings-Generation, Transmission and Distribution, vol. 142, pp.59-64, (1995).
DOI: 10.1049/ip-gtd:19951577
Google Scholar
[32]
A. Molderink, V. Bakker, M. G. Bosman, J. L. Hurink, and G. J. Smit, Management and control of domestic smart grid technology,, IEEE transactions on Smart Grid, vol. 1, pp.109-119, (2010).
DOI: 10.1109/tsg.2010.2055904
Google Scholar