[1]
M.A. Tagorti, E. Essefi, J. Touir, R. Guellala, C. Yaich, Geochemical controls of groundwaters upwelling in saline environments: Case study the discharge playa of Sidi El Hani (Sahel, Tunisia), J. Afr. Earth Sci. 86 (2013) 1-9.
DOI: 10.1016/j.jafrearsci.2013.05.004
Google Scholar
[2]
E. Essefi, J. Touir, M.A. Tagorti, C. Yaich, Effect of the groundwater contribution, the climatic change, and the human-induced activities on the hydrological behavior of discharge playas: a case study Sidi El Hani discharge playa, Tunisian Sahel, Arab. J. Geosci. 6 (2013) 3997-4009.
DOI: 10.1007/s12517-012-0659-6
Google Scholar
[3]
E. Essefi, N.B. Smida, I. Jandoubi, M.A. Othmani, M.A. Tagorti, Progressive evaporation of brine of sebkha Mchiguig, central Tunisia: a geo-economical comparative study of salt and brine, Carbonates and Evaporites, 35 (2020) 1-10.
DOI: 10.1007/s13146-020-00592-7
Google Scholar
[4]
N. Gharsalli, E. Essefi, R. Baydoun, C. Yaich, The anthropocene and great acceleration as controversial epoch of human-induced activities: case study of the halk el menjel wetland, eastern Tunisia, Appl. Ecol. Environ. Res.18 (2013) 4137-4166.
DOI: 10.15666/aeer/1803_41374166
Google Scholar
[5]
C.C. Reeves Jr, Economic significance of playa lake deposits, Modern and ancient lake sediments, 104 (2009) 279.
DOI: 10.1002/9781444303698.ch15
Google Scholar
[6]
N. Kbir-Ariguib, D.B.H. Chehimi, L. Zayani, Treatment of Tunisian salt lakes using solubility phase diagrams, Pure Appl. Chem. 73 (2001) 761-770.
DOI: 10.1351/pac200173050761
Google Scholar
[7]
H. Hammi, A. M'nif, R. Rokbani, Étude de l'évaporation d'une saumure naturelle. Corrélation conductivité-concentrations ioniques (Na+, K+, Mg2+, Cl-, SO24), Le Journal de Physique IV, 11 (2001) 10-63.
DOI: 10.1051/jp4:20011008
Google Scholar
[8]
R. Fezei, H. Hammi, A. M'nif, Selective recovery of bischofite from Sebkha El Melah natural brine, Lat. Am. Appl. Res. 39 (2009) 375.
Google Scholar
[9]
M.A. Tagorti, R. Guellala, W. Gallala, E. Essefi, S. Tlig, Geochemical and hydrogeological studies of a sodium sulphate deposits: the case of Sabkhet El Ghine Oum El Khialate, southeast Tunisia, Carbonates and Evaporites, 29 (2014) 299-307.
DOI: 10.1007/s13146-013-0180-3
Google Scholar
[10]
E. Essefi, N. Gharsalli, S. Salhi, C. Yaich, Cyclicity of grain size parameters along a Core from the Gleysol of Sebkha Ennoual, southeastern Tunisia, J. basic appl. res. (2015) 124-134.
Google Scholar
[11]
R.D. Jackson, Evaluating evapotranspiration at local and regional scales, Proceedings of the IEEE, 73 (1985) 1086-1096.
DOI: 10.1109/proc.1985.13239
Google Scholar
[12]
H.P. Eugster, G.I. Smith, Mineral equilibria in the Searles Lake evaporites, California, J. Petrol. 6 (1965) 473-522.
DOI: 10.1093/petrology/6.3.473
Google Scholar
[13]
L.A. Hardie, The origin of the recent non-marine evaporite deposit of Saline Valley, Inyo County, California, Geochim. Cosmochim. Acta . 32 (1968) 1279-1301.
DOI: 10.1016/0016-7037(68)90029-x
Google Scholar
[14]
L.A. Hardie, H.P. Eugster, The evolution of closed basin brines, Mineral. Soc. Am Spec. 3 (1970) 273-290.
Google Scholar
[15]
H.P. Eugster, L.A. Hardie, Saline lakes. In lakes Springer, New York, NY. (1978) 237-293.
DOI: 10.1007/978-1-4757-1152-3_8
Google Scholar
[16]
W.W. Wood, W.E. Sanford, Ground-water control of evaporite deposition, Econ. Geol. 85 (1990) 1226-1235.
DOI: 10.2113/gsecongeo.85.6.1226
Google Scholar
[17]
J.P. Yan, M. Hinderer, G. Einsele, Geochemical evolution of closed-basin lakes: general model and application to Lakes Qinghai and Turkana, Sediment. Geol. 148 (2002) 105-122.
DOI: 10.1016/s0037-0738(01)00212-3
Google Scholar
[18]
F. Mees, G. Stoops, Mineralogical study of salt efflorescences on soils of the Jequetepeque Valley, northern Peru, Geoderma, 49 (1991) 255-272.
DOI: 10.1016/0016-7061(91)90079-9
Google Scholar
[19]
S.E. Grasby, R.N. Betcher, Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba, Can. J. Earth Sci. 39 (2002) 1053-1063.
DOI: 10.1139/e02-021
Google Scholar
[20]
R. Sinha, B.C. Raymahashay, Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India, Sediment. Geol. 166 (2004) 59-71.
DOI: 10.1016/j.sedgeo.2003.11.021
Google Scholar
[21]
M. Li, X. Fang, C. Yi, S. Gao, W. Zhang, A. Galy, Evaporite minerals and geochemistry of the upper 400 m sediments in a core from the Western Qaidam Basin, Tibet, Quat. Int. 218 (2010) 176-189.
DOI: 10.1016/j.quaint.2009.12.013
Google Scholar
[22]
S.W. Lokier, Development and evolution of subaerial halite crust morphologies in a coastal sabkha setting, J. Arid Environ. 79 (2012) 32-47.
DOI: 10.1016/j.jaridenv.2011.11.031
Google Scholar
[23]
M.S.A. Wahed, E.A. Mohamed, M.I. El-Sayed, A. M'nif, M. Sillanpää, Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4-H2O, Desalination, 355 (2015) 11-21.
DOI: 10.1016/j.desal.2014.10.015
Google Scholar
[24]
M. Tarki, L. Dassi, Y. Jedoui, Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow, Hydrol. Sci. J. 57 (2012) 790-804.
DOI: 10.1080/02626667.2012.681783
Google Scholar
[25]
H. Besser, N. Mokadem, B. Redhaounia, R. Hadji, A. Hamad, Y. Hamed, Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia, Euro-Mediterranean Journal for Environmental Integration, 3 (2018) 1-15.
DOI: 10.1007/s41207-018-0055-z
Google Scholar
[26]
S. Bedoui, E. Essefi, Y. Hamed, Comparative study of salts and brine between two endoreic saline systems: Sebkha Bazer (Northern Algeria) and Chott Djerid (Southren Tunisia), in: The 1st International Seminar Sustainability of Saharan Agriculture and Water Use. Oral communication. 02-03-04 March (2020).
DOI: 10.4018/978-1-7998-8801-7.ch003
Google Scholar
[27]
T. Zouaghi, R. Guellala, M. Lazzez, M. Bédir, M. Ben Youssef, M.H. Inoubli, F. Zargouni, The Chotts fold belt of Southern Tunisia, North African margin: structural pattern, evolution, and regional geodynamic implications. New Frontiers in Tectonic Research—At the Midst of Plate Convergence, (2011).
DOI: 10.5772/20636
Google Scholar
[28]
Y. Hamed, R. Ahmadi, A. Demdoum, S. Bouri, I. Gargouri, H.B. Dhia, S.A. Al Gamal, R. Laouar, A. Choura, Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern Tunisia, J. Afr. Earth Sci. 100 (2014) 418-436.
DOI: 10.1016/j.jafrearsci.2014.07.012
Google Scholar
[29]
R.B. Lasmar, R. Guellala, L. Zouhri, B.S. Naouali, M. Garrach, M.H. Inoubli, Etude hydrogéologique des séries triasiques dans la région de Jeffara-Dahar (Sud Tunisien): Apport des diagraphies et de la sismique réflexion, Estud. Geol. 72 (2016) 44-44.
DOI: 10.3989/egeol.42114.373
Google Scholar
[30]
M. Gueddari, Géochimie des sels et des saumures du chott El Jerid (Sud Tunisien), Doctoral dissertation, (1980).
DOI: 10.3406/sgeol.1982.1608
Google Scholar
[31]
A. Agoune, Z. Kamel, N. Chkir, F.H. Ammar, Hydrogeological characteristics of the geothermal transboundary aquifer reservoir case study of the Continental Intercalaire Aquifer System in North Sahara Aquifer System (NSAS) in Southern Tunisian Field, International Journal of Environmental Science and Toxicology Research, 4 (2016) 54-60.
DOI: 10.1016/j.jenvrad.2016.03.005
Google Scholar
[32]
A. Ferchichi, Etude climatique en Tunisie présaharienne, Medit, 7 (1996) 46-53.
Google Scholar
[33]
P.F. Burollet, Contribution à l'étude stratigraphique de la Tunisie centrale, Ann. Mines Géol. 18 (1956) 350.
Google Scholar
[34]
F. Zargouni, A. Biely, Introduction aux cartes géologiques du Sud de la Tunisie: nomenclature, subdivisions et notations adoptées, Rev. Sc. de la Terre, 4 (1986) 1-9.
Google Scholar
[35]
S. Bouaziz, E. Barrier, M. Soussi, M.M. Turki, H. Zouari, Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record, Tectonophysics, 357 (2002) 227-253.
DOI: 10.1016/s0040-1951(02)00370-0
Google Scholar
[36]
C.S. Swezey, Structural controls on Quaternary depocentres within the Chotts Trough region of southern Tunisia, J. Afr. Earth Sci. 22 (1996) 335-347.
DOI: 10.1016/0899-5362(96)00012-7
Google Scholar
[37]
D. Garcia‐Castellanos, J. Vergés, J. Gaspar‐Escribano, S. Cloetingh, Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia), J. Geophys. Res. Solid Earth. 108 (2003).
DOI: 10.1029/2002jb002073
Google Scholar
[38]
G. Nichols, Fluvial systems in desiccating endorheic basins. Sedimentary processes, environments and basins: a tribute to Peter Friend, (2007) 569-589.
DOI: 10.1002/9781444304411.ch23
Google Scholar
[39]
F. Zargouni, A. Biely, Introduction aux cartes géologiques du Sud de la Tunisie: nomenclature, subdivisions et notations adoptées, Rev. Sc. de la Terre. 4 (1986) 1-9.
Google Scholar
[40]
P.F. Burollet, Structures and tectonics of Tunisia, Tectonophysics, 195 (1991)359-369.
DOI: 10.1016/0040-1951(91)90221-d
Google Scholar
[41]
D.F. de Lamotte, P. Leturmy, Y. Missenard, S. Khomsi, G. Ruiz, O. Saddiqi, A. Michard, Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview, Tectonophysics, 475 (2009) 9-28.
DOI: 10.1016/j.tecto.2008.10.024
Google Scholar
[42]
M.C. Rabia, F. Zargouni, Cartographie du couvert sédimentaire dans le Chott Jerid et ses environs (Sud Tunisien) par télédétection, In Apports de la télédétection à la lutte contre la sécheresse, Journées scientifiques, (1990) 253-263.
DOI: 10.7202/022279ar
Google Scholar
[43]
R.G. Bryant, The sedimentology and geochemistry of non-marine evaporites on the Chott el Djerid, using both ground and remotely sensed data (Doctoral dissertation, University of Reading), (1993).
Google Scholar
[44]
W.M. Edmunds, A.H. Guendouz, A. Mamou, A. Moulla, P. Shand, K. Zouari, Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators, J. Appl. Geochem. 18 (2003) 805-822.
DOI: 10.1016/s0883-2927(02)00189-0
Google Scholar
[45]
S.M. Ould Baba, Recharge et paléo recharge du système aquifère du Sahara septentrional, Faculté des Sciences de Tunis, Département de Géologie, 271 (2005).
Google Scholar
[46]
J.O. Petersen, P. Deschamps, B. Hamelin, J. Goncalves, J.L. Michelot, K. Zouari, Water-rock interaction and residence time of groundwater inferred by 234U/238U disequilibria in the Tunisian Continental Intercalaire aquifer system, Procedia Earth and Planetary Science, 7 (2013) 685-688.
DOI: 10.1016/j.proeps.2013.03.206
Google Scholar
[47]
Y. Hamed, R. Hadji, B. Redhaounia, K. Zighmi, F. Bâali, A. El Gayar, Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations, Euro Mediterr J Environ Integr. 3 (2018) 1-15.
DOI: 10.1007/s41207-018-0067-8
Google Scholar
[48]
Z. Kraiem, K. Zouari, N. Chkir, A. Agoune, Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia, J of Hydro-environment research 8.4 (2014): 460-473.
DOI: 10.1016/j.jher.2013.06.002
Google Scholar
[49]
M. Gueddari, C. Monnin, P. Perret, B. Fritz, Y. Tardy, Geochemistry of brines of the Chott el Djerid in southern Tunisia-application of pitzer's equation, Chem. Geol. 39 (1983) 165-178.
DOI: 10.1016/0009-2541(83)90078-5
Google Scholar
[50]
P. Paillou, S. Sufyar, A. Freeman, The Chott El Djerid, Tunisia: Observation and discussion of a SAR Phase signature over evaporitic soils, IEEE T GEOSCI REMOTE. 52 (2013) 5798-5806.
DOI: 10.1109/tgrs.2013.2292822
Google Scholar
[51]
M.S.A. Wahed, E.A. Mohamed, M.I. El-Sayed, A. M'nif, M. Sillanpää, Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4-H2O, Desalination, 355 (2015) 11-21.
DOI: 10.1016/j.desal.2014.10.015
Google Scholar
[52]
H. Craig, Isotopic variations in meteoric waters, Science, 133 (1961) 1702-1703.
DOI: 10.1126/science.133.3465.1702
Google Scholar
[53]
M.A. Maliki, M. Krimissa, J.L. Michelot, K. Zouari, Relation entre nappes superficielles et aquifère profond dans le bassin de Sfax (Tunisie), Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 331 (2000) 1-6.
DOI: 10.1016/s1251-8050(00)01386-0
Google Scholar
[54]
Kamel. S, Dassi. L, Zouari. K, (2006), Approche hydrogéologique et hydrochimique des échanges hydrodynamiques entre aquifères profond et superficiel du basin du Djérid,, Tunisie J Hydrol Sci 51: 713–730.
DOI: 10.1623/hysj.51.4.713
Google Scholar
[55]
A.B. Carpenter, Origin and chemical evolution of brines in sedimentary basins, In SPE Annual Fall Technical Conference and Exhibition, OnePetro, (1978).
Google Scholar
[56]
V. Ranganathan, J.S. Hanor, A numerical model for the formation of saline waters due to diffusion of dissolved NaCl in subsiding sedimentary basins with evaporates, J. Hydrol. 92 (1987) 97-120.
DOI: 10.1016/0022-1694(87)90091-6
Google Scholar
[57]
D.P. Sun, B.X. Li, Y.H. Ma, Q.Z. Liu, An investigation on evaporating experiments for Qinghai Lake water, China. J Salt Lake Res, 10 (2002) 1-12.
Google Scholar
[58]
R. Fezei, H. Hammi, A. Mnif, Extractive process for preparing high purity magnesium chloride hexahydrate, Chemical Industry and Chemical Engineering Quarterly/CICEQ, 18 (2012) 83-88.
DOI: 10.2298/ciceq110815049f
Google Scholar
[59]
C. Ye, M. Zheng, Z. Wang, W. Hao, J. Wang, X. Lin, J. Han, Hydrochemical characteristics and sources of brines in the Gasikule salt lake, Northwest Qaidam Basin, China, Geochemical Journal, 49 (2015) 481-494.
DOI: 10.2343/geochemj.2.0372
Google Scholar
[60]
V.M. Valyashko, Phase equilibria in water-salt systems: some problems of solubility at elevated temperature and pressure, High temperature high pressure electrochemistry in aqueous solutions, 4 (1976) 153-157.
Google Scholar
[61]
D.M. Labotka, S.V. Panno, R.A. Locke, J.T. Freiburg, Isotopic and geochemical characterization of fossil brines of the Cambrian Mt. Simon Sandstone and Ironton–Galesville Formation from the Illinois Basin, USA, Geochim. Cosmochim. Acta. 165 (2015) 342-360.
DOI: 10.1016/j.gca.2016.04.053
Google Scholar
[62]
J. Horita, D.J. Wesolowski, D.R. Cole, The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. Vapor-liquid water equilibration of single salt solutions from 50 to 100 C, Geochim. Cosmochim. Acta. 57 (1993) 2797-2817.
DOI: 10.1016/0016-7037(93)90391-9
Google Scholar
[63]
N. Stivaletta, R. Barbieri, Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia), J. Arid Environ. 73 (2009) 33-39.
DOI: 10.1016/j.jaridenv.2008.09.024
Google Scholar
[64]
E. Essefi, Geoeconomic interest versus environmental and health issues of the mineralogical assemblage of sebkha Oum El Khialate, southeastern Tunisia, Arab. J. Sci. Eng. 46 (2021) 5835-5845.
DOI: 10.1007/s13369-020-05244-5
Google Scholar
[65]
E. Essefi, M.A. Tagorti, Geoeconomic interest of minerals assemblage of sebkha El Melah, southeastern Tunisia, Water Practice & Technology, 16 (2021) 633-647.
DOI: 10.2166/wpt.2021.004
Google Scholar
[66]
E. Essefi, Geochemistry and mineralogy of the sebkha Oum El Khialate evaporites mixtures, southeastern Tunisia, Resour. Geol. 71 (2021) 242-249.
DOI: 10.1111/rge.12264
Google Scholar