[1]
Olukanni DO, Agunwamba JC and Ugwu EI (2014) Biosorption of heavy metals in industrial wastewater using micro-organisms (Pseudomonas aeruginosa). American Journal of Science and Industrial Research 5(2), 81-87.
Google Scholar
[2]
Nnaji CC, Ebeagwu CJ and Ugwu EI (2017) Physicochemical conditions for adsorption of lead by rice husk ash. Bioresources 12(1), 799-818.
DOI: 10.15376/biores.12.1.799-818
Google Scholar
[3]
Ugwu EI, Agunwamba JC (2020)A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environmental Monitoring and Assessment. 192:240. https://doi.org/10.1007/s10661-020-8162-0.
DOI: 10.1007/s10661-020-8162-0
Google Scholar
[4]
Ramalingam, S., Sathyaselvabala, V., Dinesh Kirupha, S., Sivanesan, S.,SenthilKumar, P.(2011) Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell. Desalination, 266, 63–71.
DOI: 10.1016/j.desal.2010.08.003
Google Scholar
[5]
Kaakani MW (2012) Heavy Metal removal from Wastewater using novel Adsorbent. Master's Thesis, American University of Sharjah.
Google Scholar
[6]
World Health organization (WHO, 2004) Guidelines for Drinking Water Quality.3rd Edition, Vol. 1, Geneva, Switzerland.
Google Scholar
[7]
Lofrano, G., Sureyya Meriç; Gülsüm Emel Zengin and Derin Orhon (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review Elsevier, Science of the Total Environment 461–462 (2013) 265– 281.
DOI: 10.1016/j.scitotenv.2013.05.004
Google Scholar
[8]
Meski S., Ziani S and H. KhireddineH.(2010) Removal of Lead Ions by Hydroxyapatite Prepared from the Egg Shell. Journal of Chemical Engineering Data, 55, 3923–3928.
DOI: 10.1021/je901070e
Google Scholar
[9]
Kavand, M., Soleimani, M., Kaghazchi, T., Asasian, N.(2014) Competitive separation of lead, cadmium and nickel from aqueous solutions using activated carbon: response surface modeling, equilibrium and thermodynamic studies. Chemical Engineering Communications,.
DOI: 10.1080/00986445.2014.962691
Google Scholar
[10]
Harvey, D. (2000) Modern Analytical Chemistry. McGraw-Hill, USA.
Google Scholar
[11]
Process Optimization (2018) Retrieved 30 May, 2018 from https://www.heflo.com/blog/ process- optimization/what-is-process-optimization/.
Google Scholar
[12]
Kanmani P, Karthik S, Aravind J, Kumaresan K (2013) The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate Fusariumsolani, ISRN Biotechnology 2013:8, Article ID 528708.
DOI: 10.5402/2013/528708
Google Scholar
[13]
Karri R.R.& Sahu, J. N. (2018) Process optimization and adsorption modeling using activated carbon derived from palm oil kernel shell for Zn ( II ) disposal from the aqueous environment using differential evolution embedded neural network. Journal of Molecular Liquids, 265, 592–602. https://doi.org/10.1016/j.molliq.2018.06.040.
DOI: 10.1016/j.molliq.2018.06.040
Google Scholar
[14]
Montgomery D.C. (2001) Design and analysis of experiments. Wiley, New York.
Google Scholar
[15]
Aydin, H., Bulut, Y., &Yerlikaya, C. (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87, 37–45.
DOI: 10.1016/j.jenvman.2007.01.005
Google Scholar
[16]
Kalavathy M.H. & Miranda MR (2010) Comparison of copper adsorption from aqueous solution using modified and unmodified Hevea brasiliensis saw dust. Desalination, 255,165–174.
DOI: 10.1016/j.desal.2009.12.028
Google Scholar
[17]
Patil, K. P., Patil, V. S., Patil, Patil, N., & Motiraya, V. (2012). Adsorption of copper (Cu2+) & zinc (Zn2+) metal ion from waste water by using soybean hulls and sugarcane bagasse as adsorbent. International Journal of Scientific Research and Reviews, 1(2), 13–23.
Google Scholar
[18]
Kanawade, S.M.,& Gaikwad, R.W. (2011) Removal of zinc ions from industrial effluent by using cork powder as adsorbent. International Journal of Chemical Engineering and Applications, 2(3), 199–201.
DOI: 10.7763/ijcea.2011.v2.102
Google Scholar
[19]
Ghorbani, M., Eisazadeh, H., &Ghoreyshi, A. A. (2012) Removal of zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk. Iranica Journal of Energy & Environment, 3(1), 66–71.
DOI: 10.5829/idosi.ijee.2012.03.01.3343
Google Scholar
[20]
Thakur, L. S., &Parmar, M. (2013) Adsorption of heavy metal (Cu2+, Ni2+ and Zn2+) from synthetic waste water by tea waste adsorbent. International Journal of Chemical and Physical Sciences, 2(6), 6–19.
Google Scholar
[21]
Dupont, L., Bouanda, J., Dumonceau, J., & Aplincourt,M. (2005) Biosorption of Cu (II) and Zn (II) onto a lignocellulosic substrate extracted from wheat bran. Environmental Chemistry Letters, 2, 165–168.
DOI: 10.1007/s10311-004-0095-2
Google Scholar
[22]
Nasernejad, B., Zadeh, T.E., Pour, B.B., Bygi, M.E., & Zamani, A. (2005) Comparison of biosorption modelling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residue. Journal of Process Biochemistry, 40, 319–743.
DOI: 10.1016/j.procbio.2004.06.010
Google Scholar
[23]
Shukla, S.R., & Pai, R.S. (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technology, 96,857 1430–1438.
DOI: 10.1016/j.biortech.2004.12.010
Google Scholar
[24]
Saeed, A., Iqbal, M., & Akhtar, M.W. (2005) Removal and recovery of Pb(II) from single and multi-metal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Journal of Hazardous Materials, 117, 65–73.
DOI: 10.1016/j.jhazmat.2004.09.008
Google Scholar
[25]
Mani, T., Hauk, A., Walter, U., Burkhardt-Holm, P., (2015) Microplastics profile along the rhine river. Sci. Rep. 5,1-7.
DOI: 10.1038/srep17988
Google Scholar
[26]
Iken, J.E. and Amusa, N.A.(2004) Maize research and production in Nigeria. African Journal of Biotechnology, 3 (6),302-307.
DOI: 10.5897/ajb2004.000-2056
Google Scholar
[27]
Sultana B, Anwar F, Przybylski R. (2007) Antioxidant potential ofcorncob extracts for stabilization of corn oil subjected to microwave heating. Food Chemistry, 104:997–1005.
DOI: 10.1016/j.foodchem.2006.12.061
Google Scholar
[28]
Manzoor Q., Sajid A., Hussain T., Iqbal, M., Abbas, M., Nisar, J. (2019) Efficiency of immobilized Zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater. Journal of Materials Technology Research; 8(1):724 75–86.
DOI: 10.1016/j.jmrt.2017.05.016
Google Scholar
[29]
Awwad A.M, Farhan A.M (2012) Equilibrium, kinetic and thermodynamics of biosorption of lead(II), copper(II) and cadmium(II) ions from aqueous solutions onto olive leaves powder. Amer. J. Chem. 2 (2012) 238-244.
DOI: 10.5923/j.chemistry.20120204.09
Google Scholar
[30]
Liliana, G., & Juan Carlos, M.P. (2012) Synthesis of Activated Carbon Mesoporous from Coffee Waste and Its Application in Adsorption Zinc and Mercury Ions from Aqueous Solution. E-Journal of Chemistry, 9(2), 938–948.
DOI: 10.1155/2012/120763
Google Scholar
[31]
Buah, W., MacCarthy, J., Ndur, S. (2016) Conversion of Corn Cobs Waste into Activated Carbons for Adsorption of Heavy Metals from Minerals Processing Wastewater. International Journal of Environmental Protection and Policy 4 (4), 98-103.
DOI: 10.11648/j.ijepp.20160404.11
Google Scholar
[32]
Ugwu EI, Agunwamba JC (2020) Optimal conditions for adsorption of zinc from industrial wastewater using groundnut husk ash. Environmental Monitoring and Assessment. 192:345. https://doi.org/10.1007/s10661-020-08262-w.
DOI: 10.1007/s10661-020-08262-w
Google Scholar
[33]
Zainudin, N. F., Lee, K. T., Kamaruddin, K. T., Bhatia, S., and Mohamed, A. R. (2005) Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization. Separation Purification Technology, 45, 50-60.
DOI: 10.1016/j.seppur.2005.02.008
Google Scholar
[34]
Kumar, R., Singh, R., Kumar, N., Bishnoi, K., Bishnoi, N.R., 2009. Response surface methodology approach for optimization of biosorption process for removal of Cr(VI), Ni(II) and Zn(II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Eng. J. 146, 401–407. https://doi.org/10.1016/j.cej.2008.06.020.
DOI: 10.1016/j.cej.2008.06.020
Google Scholar
[35]
Anilkumar, B., Chitti, N.B., Kavitha, G. (2016) Biosorption of Zinc on to Gracilaria corticata (Red Algae) Powder and Optimization using Central Composite Design. Journal of Applied Science and Engineering Methodologies 2(3), 412–425.
Google Scholar
[36]
Harrington, E. C. (1965) The desirability function. Industrial Quality Control, 21, 494–498.
Google Scholar
[37]
Kuhn, M. Desirability (2020) Desirabiliy Function Optimization and Ranking. R Package Version. Available online:http://CRAN.R-project.org/package=desirability (accessed on 10th January, 2020).
Google Scholar
[38]
Lorza, R., Calvo, M., Labari, C., Fuente, P.(2018) Using the multi-response method with desirability functions to optimize the zinc electroplating of steel screws. Metals, 8, 711.
DOI: 10.3390/met8090711
Google Scholar
[39]
Arroyo-Gomez, J.J., Villarroel-Rocha, D., Freitas-Araugo, K.C., Martinez-Huitle, C.A., Sapag, K. (2018) Applicability of activated carbon obtained from peach stone asan electrochemical sensor for detecting caffeine. Journal of Electroanalitical Chemistry. https:// doi.org/10.1016/j.jelechem.2018.05.08.
DOI: 10.1016/j.jelechem.2018.05.028
Google Scholar
[40]
Dinesh, S. (2011) Development and characterization of pellet activated carbon from new precursor. BSc. Thesis, National Institute of Technology, Rourkela, India.
Google Scholar
[41]
Nakano, Y., Takeshita, K. and Tsutsumi, T. (2001) Adsorption Mechanism of Hexavalent Chromium by Redox within Condensed-Tannin Gel. Water Resources 35 (2); 496-500.
DOI: 10.1016/s0043-1354(00)00279-7
Google Scholar
[42]
Tang, S., Chen,Y., Xie, R., Jiang, W., and Jiang, Y.(2016) Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal. Water Science and Technology. 73(11).
DOI: 10.2166/wst.2016.120
Google Scholar
[43]
Spectroscopic tools. (2018) Accessed on September 10, 2018 from http:// www.science-and-fun.de/tools/.
Google Scholar
[44]
Absorption table (2014) Infrared Spectroscopy Absorption Table. Retrieved September 10, 2018 from https://chem.libretexts.org/Reference/Reference Tables/Spectroscopic Parameters/ Infrared Spectroscopy Absorption_Table.
Google Scholar
[45]
Marsh, H., Rodríguez-Reinoso, F.(2006) Activated carbon. https://doi.org/10.1016/ B978-0-08-044463-5.X5013-4.
Google Scholar
[46]
El-Hendawy, A.N.A. (2005) Surface and adsorptive properties of carbons prepared from biomass. Applied Surface Science, 252, 287-295.
DOI: 10.1016/j.apsusc.2004.11.092
Google Scholar
[47]
Ahmad, M. A. and Alrozi, R. (2011) Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies, Chemical Engineering Journal, 171( 2), 510- 516.
DOI: 10.1016/j.cej.2011.04.018
Google Scholar
[48]
Bello OS, Ahmad MA (2012) Preparation and characterization of activated carbon derived from rubber seed coat. Bulgarian Journal of Science Education 21:389–395.
Google Scholar
[49]
Dubinin, M. M., Plavnik, G.M and Zaverina, E.D. (1964) Integrated Study of the Porous Structure of Activated Carbon from Carbonized Sucrose. Carbon, 2: 261 - 268.
DOI: 10.1016/0008-6223(64)90040-5
Google Scholar
[50]
Adewoye, L. T., Mustapha, S. I., Adeniyi, A. G., Tijani, J. O., Amoloye, M. A., Ayinde, L. J., Inna, M. (2017) Optimization of nickel (ii) and chromium ( iii ) removalfrom contaminated water using sorghum bicolor. Nigerian Journal of Technology, 36(3), 960–972.
DOI: 10.4314/njt.v36i3.41
Google Scholar
[51]
Hameed B.H., Tan, A. W. and Ahmad, A. A. (2008) Optimization of basic dye removal by oil palm fiber based activated carbon using response surface methodology. Journal of Hazardous Materials, 158, 324-332.
DOI: 10.1016/j.jhazmat.2008.01.088
Google Scholar
[52]
Chowdhury, Z. Z., Zain, S. M., Khan, R. A., Ahmad, A. A., & Khalid, K. (2012) Application of Response Surface Methodology ( RSM ) for Optimizing Production Conditionfor Removal of Pb( II ) and Cu ( II ) onto Kenaf Fiber Based Activated Carbon. Bioresources4(5), 458–465.
Google Scholar
[53]
Mondal, M., Ray, A.K. (2020) Removal of As(V) using low cost adsorbents: aerocrete and vermiculite modified with iron oxy‑hydroxide. Adsorption, https://doi.org/10.1007/s10450-020-00201-y.
DOI: 10.1007/s10450-020-00201-y
Google Scholar
[54]
Design expert (2018) Design-Expert software version 11.0.3. Stat-Ease, Inc.,Minneapolis, MN 55413, USA.
Google Scholar
[55]
Das, B. (2017) Response surface modeling of copper ( II ) adsorption from aqueous solution onto neem (Azadirachta indica ) bark powder : Central composite design approach. 8(II), 2442–2454.
Google Scholar
[56]
Aravind, J., Lenin, C., Nancyflavia, C., Rashika, P., Saravanan, S.(2015). Response surface methodology optimization of nickel (II) removal using pigeon pea pod biosorbent, International Journal of Environmental Science and Technology, 12:105-114, DOI 10.1007/s13762-013-0391-0.
DOI: 10.1007/s13762-013-0391-0
Google Scholar
[57]
Kalavathy, M.H., Regupathi, I, Pillai MG, Miranda LR (2009) Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids Surf B 70(1):35–45.
DOI: 10.1016/j.colsurfb.2008.12.007
Google Scholar
[58]
Chowdhury, Z.C. (2013) Preparation, characterization and adsorption studies of heavy metals onto activated adsorbent materials derived from agricultural residues. PhD Thesis, University of Malaya Kuala Lumpur.
Google Scholar
[59]
Ngugi, F. (2015) Adsorption of heavy metals from aqueous solutions using mangroves from Kenyan coast. Master's Thesis, University of Nairobi.
Google Scholar
[60]
Nnaji, C.C. Emefu, S.C. (2017) Effect of particle size on the sorption of lead from water by the different species of sawdust: equilibrium and kinetic study.Bioresources, 12(2), 4123-4145.
DOI: 10.15376/biores.12.2.4123-4145
Google Scholar
[61]
Araromi, D. O., Alade, A. O., Bello, M. O., Bakare, T., Akinwande, B. A., Jameel, A. T. and Adegbola, S. A. (2017) Optimization of Oil Extraction from Pitanga (Eugenia Uniflora L) Leaves Using Simplex Centroid Design (SCD). Separation Science and Technology, 52:8, 1341-1349/.
DOI: 10.1080/01496395.2017.1287199
Google Scholar
[62]
Banu, I. (2006) Sorption kinetics of zinc and nickel ions on maize cob, scientific study & research, VII (2).
Google Scholar
[63]
Asubiojo, O.I., and Ajelabi, O.B. (2009) Removal of heavy metals from industrial wastewaters using natural adsorbents, Toxicological & Environmental Chemistry, 91:5, 883-890,.
DOI: 10.1080/02772240802614721
Google Scholar
[64]
Khan, N. M. and Wahab, F.M. (2007) Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. Journal of Hazardous Materials, 141,237-244.
DOI: 10.1016/j.jhazmat.2006.06.119
Google Scholar