[1]
C.K. Cha, Y. Jaluria, Recirculating mixed convection flow for energy extraction, Int. J. Heat Mass. Transfer. 27 (1984) 1801-1812.
DOI: 10.1016/0017-9310(84)90162-5
Google Scholar
[2]
A.G. Fedorov, R. Viskanta, Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging, Int. J. Heat Mass. Transfer. 43 (2000) 399-415.
DOI: 10.1016/s0017-9310(99)00151-9
Google Scholar
[3]
Y. Su, J.H. Davidson, Modeling Approaches to Natural convection in Porous Media, SpringerBriefs in Applied Sciences and Technology, New York, (2015).
Google Scholar
[4]
S.E. Ahmed, M.A. Mansour, A.K. Hussein, S. Sivasankaran, Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids, Eng. Sci. Tech. Int. J. 19 (2016) 364-376.
DOI: 10.1016/j.jestch.2015.08.005
Google Scholar
[5]
S. Saravanan, R.K. Brinda, Thermal nonequilibrium porous convection in a heat generating medium, Int. J. Mech. Sci. 135 (2018) 133-145.
DOI: 10.1016/j.ijmecsci.2017.10.024
Google Scholar
[6]
S. Hussein, S.E. Ahmed, Steady natural convection in open cavities filled with a porous medium utilizing Buongiorno's nanofluid model, Int. J. Mech. Sci. 157 (2019) 692-702.
DOI: 10.1016/j.ijmecsci.2018.10.071
Google Scholar
[7]
C.W. Horton, F.T. Rogers Jr., Convection currents in a porous medium, J. Appl. Phys. 16 (1945) 367-370.
Google Scholar
[8]
E.R. Lapwood, Convection of a fluid in a porous medium, in: Math Proc Camb Phil Soci, Cambridge University Press, 1948, pp.508-521.
DOI: 10.1017/s030500410002452x
Google Scholar
[9]
K.E. Singh, A.K. Pandey, M.K. Kumar, Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ion-slip currents: an analytic approach, Propul. Pow. Resrch. 9 (2020) 289-303.
DOI: 10.1016/j.jppr.2020.04.006
Google Scholar
[10]
F. Fadaei, M. Shahrokhi, A.M. Dehkordi, Z. Abbasi, Forced-convection heat transfer of ferrofluids in a circular duct partially filled with porous medium in the presence of magnetic field, J. Magntm Magntc. Mater. 475 (2019) 304-315.
DOI: 10.1016/j.jmmm.2018.11.032
Google Scholar
[11]
N.H. Abou-Hamdeh, H.F. Oztop, K.A. Alnefaie, A computational study on mixed convection in a porous media filled and partially heated lid-driven cavity with an open side, Alexdr. Eng. J. 59 (2020) 1735-1750.
DOI: 10.1016/j.aej.2020.04.039
Google Scholar
[12]
M. Ghalambaz, A. Tahmasebi, A.J. Chamkha, D. Wen, Conjugate local thermal non-equilibrium heat transfer in a cavity filled with a porous medium: analysis of the element location, Int. J. Heat Mass. Transfer. 138 (2019) 941-960.
DOI: 10.1016/j.ijheatmasstransfer.2019.03.073
Google Scholar
[13]
A. Mishra, A.K. Pandey, M. Kumar, Ohmic-viscous dissipation and slip effects on nanofluid flow over a stretching cylinder with suction/injection, Nanosci. Tech. Int. J. 9 (2018) 99-115.
DOI: 10.1615/nanoscitechnolintj.2018025410
Google Scholar
[14]
A. Mishra, A.K. Pandey, M. Kumar, Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation, Heat. Transfer. Resrch. 50 (2019) 1351-1367.
DOI: 10.1615/heattransres.2018020420
Google Scholar
[15]
D.A.S. Rees, A. Barletta, Onset of convection in a porous layer with continuous periodic horizontal stratification, Part II: Three-dimensional convection, Eur. J. Mech. B-Fluid. 47 (2014) 57-67.
DOI: 10.1016/j.euromechflu.2014.02.008
Google Scholar
[16]
A. Chattopadhyay, S.K. Pandit, S.S. Sarma, I. Pop, Mixed convection in a double lid-driven sinusoidally heated porous cavity, Int. J. Heat Mass. Transfer. 93 (2016) 361-378.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.010
Google Scholar
[17]
H. Upreti, A.K. Pandey, M. Kumar, O.D. Makinde, Ohmic heating and non-uniform heat source/sink roles on 3D Darcy–Forchheimer flow of CNTs nanofluids over a stretching surface, Arab. J. Sci. Eng. 45 (2020) 7705-7717.
DOI: 10.1007/s13369-020-04826-7
Google Scholar
[18]
S. Kim, S. Lorente, A. Bejan, Transient behavior of vascularized walls exposed to sudden heating, J. Therm. Sci. 48 (2009) 2046-2052.
DOI: 10.1016/j.ijthermalsci.2009.03.019
Google Scholar
[19]
K. Yang, K. Vafai, Analysis of temperature gradient bifurcation in porous media–an exact solution, Int. J. Heat Mass. Transfer. 53 (2010) 4316-4325.
DOI: 10.1016/j.ijheatmasstransfer.2010.05.060
Google Scholar
[20]
A.K. Pandey, M. Kumar, K.A. Alnefaie, Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip, Alexdr. Eng. J. 55 (2016) 3115-3123.
DOI: 10.1016/j.aej.2016.08.018
Google Scholar
[21]
H. Upreti, A.K. Pandey, M. Kumar, O.D. Makinde, MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption, Alexdr. Eng. J. 57 (2018) 1839-1847.
DOI: 10.1016/j.aej.2017.03.018
Google Scholar
[22]
P. Kandaswamy, M. Eswaramurthi, C.O. Ng, Transient buoyancy-driven convection of water around 4° C in a porous cavity with internal heat generation, Phys. Fluids. 20 (2008) 087104.
DOI: 10.1063/1.2974805
Google Scholar
[23]
T. Kawamura, H. Takami, K. Kuwahara, New higher-order upwind scheme for incompressible Navier-Stokes equations, in: Ninth International Conference on Numer. Method Fluid Dynamics, Springer, Berlin, 1985, pp.291-295.
DOI: 10.1007/3-540-13917-6_152
Google Scholar
[24]
B. Carnahan, H.A. Luther, Applied numerical methods, Mc Graw Hill, New York, (1969).
Google Scholar
[25]
D.S. Kumar, A.K. Dass, A. Dewan, Analysis of non-Darcy models for mixed convection in a porous cavity using a multigrid approach, Numer. Heat. Transfer. 56 (2009) 685-708.
DOI: 10.1080/10407780903424674
Google Scholar