[1]
R.E. Smallman, R.. Bishop, Modern Physical Metallurgy and Materials Engineering, Sixth Edit, Butterworth-Heinemann, 1999.
Google Scholar
[2]
D.. Llewellyn, R.. Hudd, Steels : Metallurgy and Applications, 3rd ed, BUtterworth-Heinemann, 1998.
Google Scholar
[3]
P. Zhang, Crystal Plasticity based Formability Analysis of Transformation Induced Plasticity Steels, (2018).
Google Scholar
[4]
T. Altan, A.E. Tekkaya, Sheet Metal Forming, (2012).
Google Scholar
[5]
B. Dutta, M. Rettenmayr, Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys, Mater. Sci. Eng. A. 283 (2000) 218–224.
DOI: 10.1016/s0921-5093(00)00742-5
Google Scholar
[6]
K. K.Sankaran, R. S.Mishra, Chapter-4_Aluminium alloys_RS Mishra, 2017.
Google Scholar
[7]
H. Zhang, A. Pan, R. Hei, P. Liu, An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti, Appl. Phys. A Mater. Sci. Process. 127 (2021) 1–7.
DOI: 10.1007/s00339-021-04522-9
Google Scholar
[8]
M. Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti, Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation, Int. J. Eng. Res. Africa. 61 (2022) 1–15.
DOI: 10.4028/p-0xoa4x
Google Scholar
[9]
H. Kumar, P.K. Maiti, Introduction to Molecular Dynamics Simulation, 23 (2011) 161–197.
Google Scholar
[10]
W. Gonçalves, J. Morthomas, P. Chantrenne, M. Perez, G. Foray, C.L. Martin, Elasticity and strength of silica aerogels: A molecular dynamics study on large volumes, Acta Mater. 145 (2018) 165–174.
DOI: 10.1016/j.actamat.2017.12.005
Google Scholar
[11]
S. Starikov, V. Tseplyaev, Two-scale simulation of plasticity in molybdenum: Combination of atomistic simulation and dislocation dynamics with non-linear mobility function, Comput. Mater. Sci. 179 (2020) 109585.
DOI: 10.1016/j.commatsci.2020.109585
Google Scholar
[12]
H.M. Tawancy, Correlation between disorder-order transformations in a Ni-based alloy and its mechanical properties, Mater. Sci. Eng. A. 719 (2018) 93–103.
DOI: 10.1016/j.msea.2018.02.033
Google Scholar
[13]
A. Belyakov, Microstructure and mechanical properties of structural metals and alloys, Metals (Basel). 8 (2018) 13–15.
Google Scholar
[14]
T. Dutta, A. Chauniyal, I. Singh, R. Narasimhan, P. Thamburaja, U. Ramamurty, Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading, J. Mech. Phys. Solids. 111 (2018) 393–413.
DOI: 10.1016/j.jmps.2017.11.011
Google Scholar
[15]
L. Kommel, M. Saarna, R. Traksmaa, I. Kommel, Microstructure, properties and atomic level strain in severely deformed rare metal niobium, Medziagotyra. 18 (2012) 330–335.
DOI: 10.5755/j01.ms.18.4.3091
Google Scholar
[16]
P.N.H. Nakashima, The Crystallography of Aluminum and Its Alloys, 2019.
Google Scholar
[17]
H.J. Buser, A. Ludi, D. Schwarzenbach, W. Petter, The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O, Inorg. Chem. 16 (1977) 2704–2710.
DOI: 10.1021/ic50177a008
Google Scholar
[18]
K.M.M. R.F. Adamsky, Crystallography of Silicon Carbide, Zeitschrift Für Krist. 3 (1959) 350.
Google Scholar
[19]
V.A. Lubarda, On the effective lattice parameter of binary alloys, Mech. Mater. 35(2003)53-68.
Google Scholar
[20]
V. Raghavan, Al-Fe-Si-Zn (Aluminum-Iron-Silicon-Zinc), J. Phase Equilibria Diffus. 32 (2011) 158–159.
DOI: 10.1007/s11669-010-9831-4
Google Scholar
[21]
M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, K.W. Richter, Phase equilibria and structural investigations in the system Al-Fe-Si, Intermetallics. 19 (2011) 1919–1929.
DOI: 10.1016/j.intermet.2011.05.003
Google Scholar
[22]
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276.
DOI: 10.1107/s0021889811038970
Google Scholar
[23]
K. Ji, C. Arson, Tensile strength of calcite/HMWM and silica/HMWM interfaces: A Molecular Dynamics analysis, Constr. Build. Mater. 251 (2020).
DOI: 10.1016/j.conbuildmat.2020.118925
Google Scholar
[24]
L. Verlet, Computer "experiments" on classical fluids. II. Equilibrium correlation functions, Phys. Rev. 165 (1968) 201–214.
DOI: 10.1103/physrev.165.201
Google Scholar
[25]
C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123 (2005) 0–15.
Google Scholar
[26]
S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 17 (1995) 1–19.
Google Scholar
[27]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 15012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[28]
B.J. Lee, A modified embedded atom method interatomic potential for silicon, Calphad Comput. Coupling Phase Diagrams Thermochem. 31 (2007) 95–104.
DOI: 10.1016/j.calphad.2006.10.002
Google Scholar
[29]
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, M.I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 85 (2012).
DOI: 10.1103/physrevb.85.245102
Google Scholar
[30]
M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742.
DOI: 10.1103/physrevb.46.2727
Google Scholar
[31]
E.P. Busso, G. Cailletaud, On the selection of active slip systems in crystal plasticity, Int. J. Plast. 21 (2005) 2212–2231.
DOI: 10.1016/j.ijplas.2005.03.019
Google Scholar
[32]
E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models, J. Mater. Sci. 51 (2016) 2243–2258.
DOI: 10.1007/s10853-015-9553-4
Google Scholar
[33]
X.X. Zhang, H. Andrä, S. Harjo, W. Gong, T. Kawasaki, A. Lutz, M. Lahres, Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation, Mater. Des. 198 (2021) 1–9.
DOI: 10.1016/j.matdes.2020.109339
Google Scholar
[34]
J. Guénolé, W.G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, E. Bitzek, Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS, Comput. Mater. Sci. 175 (2020) 109584.
DOI: 10.1016/j.commatsci.2020.109584
Google Scholar
[35]
Y. Wang, J. Zuo, N. Jiang, K. Niu, Y. Wu, Uniaxial tension deformation study of copper/nickel laminated composites: Effects of lamella number and interlamellar spacing, Comput. Mater. Sci. 171 (2020) 109272.
DOI: 10.1016/j.commatsci.2019.109272
Google Scholar
[36]
G.S. Camprubí, Mechanical properties at nano-level, (2011).
Google Scholar
[37]
L. Seaman, D.R. Curran, D.A. Shockey, Computational models for ductile and brittle fracture, J. Appl. Phys. 47 (1976) 4814–4826.
DOI: 10.1063/1.322523
Google Scholar
[38]
J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks, R.A. Lebensohn, Effects of grain size and boundary structure on the dynamic tensile response of copper, J. Appl. Phys. 110 (2011).
DOI: 10.1063/1.3607294
Google Scholar
[39]
D.R. Curran, L. Seaman, D.A. Shockey, Dynamic failure in solids, Phys. Today. 30(1977)46-55.
DOI: 10.1063/1.3037367
Google Scholar
[40]
J.P. Mercier, G. Zambelli, W. Kurz, Factors influencing mechanical properties, Introd. to Mater. Sci. (2002) 279–320.
DOI: 10.1016/b978-2-84299-286-6.50018-4
Google Scholar
[41]
S.V. Sukhomlinov, M.H. Müser, Determination of accurate, mean bond lengths from radial distribution functions, J. Chem. Phys. 146 (2017).
DOI: 10.1063/1.4973804
Google Scholar
[42]
Q.L. Cao, F. Tu, L. Xue, F.H. Wang, Assessing relationships between self-diffusion coefficient and viscosity in Ni-Al alloys based on the pair distribution function, J. Appl. Phys. 126 (2019) 0–10.
DOI: 10.1063/1.5109598
Google Scholar
[43]
M. Taoufiki, H. Chabba, A. Barroug, A. Jouaiti, D. Dafir, Atomic-scale compression and tensile investigations for crystalline Aluminum using EAM and MEAM potentials, Moroccan J. Chem. 10 (2022) 362–374.
Google Scholar
[44]
M. Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti, Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation, 61 (2022) 1–15.
DOI: 10.4028/p-0xoa4x
Google Scholar
[45]
H.B. Bürgi, S.C. Capelli, Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. I. Theory, Acta Crystallogr. Sect. A. 56 (2000) 403–412.
DOI: 10.1107/s0108767300005626
Google Scholar
[46]
Materials Project, Materials Data on Al3FeSi2 by Materials Project, (2016). https://doi.org/.
Google Scholar
[47]
Materials Project, Materials Data on Al3Fe2Si by Materials Project, (2016). https://doi.org/.
Google Scholar
[48]
L. Amirkhanyan, T. Weissbach, T. Gruber, T. Zienert, O. Fabrichnaya, J. Kortus, Thermodynamic investigation of the τ4-Al–Fe–Si intermetallic ternary phase: A density-functional theory study, J. Alloys Compd. 598 (2014) 137–141.
DOI: 10.1016/j.jallcom.2014.01.234
Google Scholar
[49]
A. Zolriasatein, A. Shokuhfar, Homogenizing annealing heat treatment effects on the microstructure, hardness and thermal behavior of Al12Mg17 complex metallic alloy, Mater. Des. 75 (2015) 17–23.
DOI: 10.1016/j.matdes.2015.03.014
Google Scholar
[50]
E.G. Morni, W. Wolf, J. Hafner, R. Podloucky, Cohesive, structural, and electronic properties of fe-si compounds, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 12860–12871.
DOI: 10.1103/physrevb.59.12860
Google Scholar