The Bond Length of Intermetallic Ternary Phases of Al-Fe-Si Alloy Using Molecular Dynamics Simulation with the Application of [001] Compression

Article Preview

Abstract:

The research on tolerance stress in aluminum alloys is focused on examining the mechanical behavior of τ4-Al3FeSi2 and τ12-Al3Fe2Si phases during [001] compression and their structural evolution. The use of MD computational bond length measurements allows for a comparison to be made with previous studies on tensile deformation. The simulations were performed at a constant strain rate of 21×1010 s-1, using NPT conditions (isothermal-isobaric), with approximately 20,000 atoms, 1 atmosphere of pressure, and 300 K temperature, using a Nosé-Hoover thermostat. Under periodic boundary conditions, the Modified Embedded Atoms Method (MEAM) potential was applied to all 3D faces, and the average bond length behavior between Al, Fe, and Si was calculated. A comprehensive investigation is carried out to explore the properties of these phases, including a detailed structural analysis at the atomic scale. This paper presents a comprehensive analysis of how changes in compound concentration affect mechanical behavior during compression. The average bond length varies depending on the applied stress axis, and it demonstrates good agreement with literature data. The mechanical deformations alter the behavior of atomic phases, as discussed in detail in the conclusion.

You might also be interested in these eBooks

Info:

Pages:

1-17

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.E. Smallman, R.. Bishop, Modern Physical Metallurgy and Materials Engineering, Sixth Edit, Butterworth-Heinemann, 1999.

Google Scholar

[2] D.. Llewellyn, R.. Hudd, Steels : Metallurgy and Applications, 3rd ed, BUtterworth-Heinemann, 1998.

Google Scholar

[3] P. Zhang, Crystal Plasticity based Formability Analysis of Transformation Induced Plasticity Steels, (2018).

Google Scholar

[4] T. Altan, A.E. Tekkaya, Sheet Metal Forming, (2012).

Google Scholar

[5] B. Dutta, M. Rettenmayr, Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys, Mater. Sci. Eng. A. 283 (2000) 218–224.

DOI: 10.1016/s0921-5093(00)00742-5

Google Scholar

[6] K. K.Sankaran, R. S.Mishra, Chapter-4_Aluminium alloys_RS Mishra, 2017.

Google Scholar

[7] H. Zhang, A. Pan, R. Hei, P. Liu, An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti, Appl. Phys. A Mater. Sci. Process. 127 (2021) 1–7.

DOI: 10.1007/s00339-021-04522-9

Google Scholar

[8] M. Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti, Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation, Int. J. Eng. Res. Africa. 61 (2022) 1–15.

DOI: 10.4028/p-0xoa4x

Google Scholar

[9] H. Kumar, P.K. Maiti, Introduction to Molecular Dynamics Simulation, 23 (2011) 161–197.

Google Scholar

[10] W. Gonçalves, J. Morthomas, P. Chantrenne, M. Perez, G. Foray, C.L. Martin, Elasticity and strength of silica aerogels: A molecular dynamics study on large volumes, Acta Mater. 145 (2018) 165–174.

DOI: 10.1016/j.actamat.2017.12.005

Google Scholar

[11] S. Starikov, V. Tseplyaev, Two-scale simulation of plasticity in molybdenum: Combination of atomistic simulation and dislocation dynamics with non-linear mobility function, Comput. Mater. Sci. 179 (2020) 109585.

DOI: 10.1016/j.commatsci.2020.109585

Google Scholar

[12] H.M. Tawancy, Correlation between disorder-order transformations in a Ni-based alloy and its mechanical properties, Mater. Sci. Eng. A. 719 (2018) 93–103.

DOI: 10.1016/j.msea.2018.02.033

Google Scholar

[13] A. Belyakov, Microstructure and mechanical properties of structural metals and alloys, Metals (Basel). 8 (2018) 13–15.

Google Scholar

[14] T. Dutta, A. Chauniyal, I. Singh, R. Narasimhan, P. Thamburaja, U. Ramamurty, Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading, J. Mech. Phys. Solids. 111 (2018) 393–413.

DOI: 10.1016/j.jmps.2017.11.011

Google Scholar

[15] L. Kommel, M. Saarna, R. Traksmaa, I. Kommel, Microstructure, properties and atomic level strain in severely deformed rare metal niobium, Medziagotyra. 18 (2012) 330–335.

DOI: 10.5755/j01.ms.18.4.3091

Google Scholar

[16] P.N.H. Nakashima, The Crystallography of Aluminum and Its Alloys, 2019.

Google Scholar

[17] H.J. Buser, A. Ludi, D. Schwarzenbach, W. Petter, The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O, Inorg. Chem. 16 (1977) 2704–2710.

DOI: 10.1021/ic50177a008

Google Scholar

[18] K.M.M. R.F. Adamsky, Crystallography of Silicon Carbide, Zeitschrift Für Krist. 3 (1959) 350.

Google Scholar

[19] V.A. Lubarda, On the effective lattice parameter of binary alloys, Mech. Mater. 35(2003)53-68.

Google Scholar

[20] V. Raghavan, Al-Fe-Si-Zn (Aluminum-Iron-Silicon-Zinc), J. Phase Equilibria Diffus. 32 (2011) 158–159.

DOI: 10.1007/s11669-010-9831-4

Google Scholar

[21] M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, K.W. Richter, Phase equilibria and structural investigations in the system Al-Fe-Si, Intermetallics. 19 (2011) 1919–1929.

DOI: 10.1016/j.intermet.2011.05.003

Google Scholar

[22] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276.

DOI: 10.1107/s0021889811038970

Google Scholar

[23] K. Ji, C. Arson, Tensile strength of calcite/HMWM and silica/HMWM interfaces: A Molecular Dynamics analysis, Constr. Build. Mater. 251 (2020).

DOI: 10.1016/j.conbuildmat.2020.118925

Google Scholar

[24] L. Verlet, Computer "experiments" on classical fluids. II. Equilibrium correlation functions, Phys. Rev. 165 (1968) 201–214.

DOI: 10.1103/physrev.165.201

Google Scholar

[25] C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123 (2005) 0–15.

Google Scholar

[26] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 17 (1995) 1–19.

Google Scholar

[27] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 15012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[28] B.J. Lee, A modified embedded atom method interatomic potential for silicon, Calphad Comput. Coupling Phase Diagrams Thermochem. 31 (2007) 95–104.

DOI: 10.1016/j.calphad.2006.10.002

Google Scholar

[29] B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, M.I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 85 (2012).

DOI: 10.1103/physrevb.85.245102

Google Scholar

[30] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742.

DOI: 10.1103/physrevb.46.2727

Google Scholar

[31] E.P. Busso, G. Cailletaud, On the selection of active slip systems in crystal plasticity, Int. J. Plast. 21 (2005) 2212–2231.

DOI: 10.1016/j.ijplas.2005.03.019

Google Scholar

[32] E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models, J. Mater. Sci. 51 (2016) 2243–2258.

DOI: 10.1007/s10853-015-9553-4

Google Scholar

[33] X.X. Zhang, H. Andrä, S. Harjo, W. Gong, T. Kawasaki, A. Lutz, M. Lahres, Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation, Mater. Des. 198 (2021) 1–9.

DOI: 10.1016/j.matdes.2020.109339

Google Scholar

[34] J. Guénolé, W.G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, E. Bitzek, Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS, Comput. Mater. Sci. 175 (2020) 109584.

DOI: 10.1016/j.commatsci.2020.109584

Google Scholar

[35] Y. Wang, J. Zuo, N. Jiang, K. Niu, Y. Wu, Uniaxial tension deformation study of copper/nickel laminated composites: Effects of lamella number and interlamellar spacing, Comput. Mater. Sci. 171 (2020) 109272.

DOI: 10.1016/j.commatsci.2019.109272

Google Scholar

[36] G.S. Camprubí, Mechanical properties at nano-level, (2011).

Google Scholar

[37] L. Seaman, D.R. Curran, D.A. Shockey, Computational models for ductile and brittle fracture, J. Appl. Phys. 47 (1976) 4814–4826.

DOI: 10.1063/1.322523

Google Scholar

[38] J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks, R.A. Lebensohn, Effects of grain size and boundary structure on the dynamic tensile response of copper, J. Appl. Phys. 110 (2011).

DOI: 10.1063/1.3607294

Google Scholar

[39] D.R. Curran, L. Seaman, D.A. Shockey, Dynamic failure in solids, Phys. Today. 30(1977)46-55.

DOI: 10.1063/1.3037367

Google Scholar

[40] J.P. Mercier, G. Zambelli, W. Kurz, Factors influencing mechanical properties, Introd. to Mater. Sci. (2002) 279–320.

DOI: 10.1016/b978-2-84299-286-6.50018-4

Google Scholar

[41] S.V. Sukhomlinov, M.H. Müser, Determination of accurate, mean bond lengths from radial distribution functions, J. Chem. Phys. 146 (2017).

DOI: 10.1063/1.4973804

Google Scholar

[42] Q.L. Cao, F. Tu, L. Xue, F.H. Wang, Assessing relationships between self-diffusion coefficient and viscosity in Ni-Al alloys based on the pair distribution function, J. Appl. Phys. 126 (2019) 0–10.

DOI: 10.1063/1.5109598

Google Scholar

[43] M. Taoufiki, H. Chabba, A. Barroug, A. Jouaiti, D. Dafir, Atomic-scale compression and tensile investigations for crystalline Aluminum using EAM and MEAM potentials, Moroccan J. Chem. 10 (2022) 362–374.

Google Scholar

[44] M. Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti, Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation, 61 (2022) 1–15.

DOI: 10.4028/p-0xoa4x

Google Scholar

[45] H.B. Bürgi, S.C. Capelli, Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. I. Theory, Acta Crystallogr. Sect. A. 56 (2000) 403–412.

DOI: 10.1107/s0108767300005626

Google Scholar

[46] Materials Project, Materials Data on Al3FeSi2 by Materials Project, (2016). https://doi.org/.

Google Scholar

[47] Materials Project, Materials Data on Al3Fe2Si by Materials Project, (2016). https://doi.org/.

Google Scholar

[48] L. Amirkhanyan, T. Weissbach, T. Gruber, T. Zienert, O. Fabrichnaya, J. Kortus, Thermodynamic investigation of the τ4-Al–Fe–Si intermetallic ternary phase: A density-functional theory study, J. Alloys Compd. 598 (2014) 137–141.

DOI: 10.1016/j.jallcom.2014.01.234

Google Scholar

[49] A. Zolriasatein, A. Shokuhfar, Homogenizing annealing heat treatment effects on the microstructure, hardness and thermal behavior of Al12Mg17 complex metallic alloy, Mater. Des. 75 (2015) 17–23.

DOI: 10.1016/j.matdes.2015.03.014

Google Scholar

[50] E.G. Morni, W. Wolf, J. Hafner, R. Podloucky, Cohesive, structural, and electronic properties of fe-si compounds, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 12860–12871.

DOI: 10.1103/physrevb.59.12860

Google Scholar