[1]
E. Gedefaye and S. Lakeou, Simulation development of multi-axis PV system tracker, 2019 IEEE 2nd Int. Conf. Renew. Energy Power Eng.,(2019) 38–42.
DOI: 10.1109/repe48501.2019.9025109
Google Scholar
[2]
E. Gedefaye, S. Lakeou, T. Tadiwose, and T. Terefe, Application of system-based solar photovoltaic microgrid for residential real estate, JERA, 64 (2023) 117–32.
DOI: 10.4028/p-zj5ao9
Google Scholar
[3]
A. Ul-Haq, et al., "Intelligent control schemes for maximum power extraction from photovoltaic arrays under faults." Energies 16.2 (2023) 974.
DOI: 10.3390/en16020974
Google Scholar
[4]
I. Shams, S. Member, S. Mekhilef, S. Member, and K. S. Tey, "Maximum power point tracking using modified Butterfly Optimization algorithm for partial shading, uniform shading, and fast varying load conditions, IEEE Transactions on Power Electronics, 36.5 (2020) 5569–5581.
DOI: 10.1109/tpel.2020.3029607
Google Scholar
[5]
C. Manickam, G. P. Raman, G. R. Raman, S. I. Ganesan, and N. Chilakapati, Fireworks enriched P&O algorithm for GMPPT and detection of partial shading in PV systems, IEEE Trans. Power Electron., 32.6 (2016) 4432–4443.
DOI: 10.1109/tpel.2016.2604279
Google Scholar
[6]
M. Lasheen and M. Abdel-Salam, Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: A review and a novel hybrid approach, Energy Convers. Manag. 171 (2018) 1002–1019.
DOI: 10.1016/j.enconman.2018.06.003
Google Scholar
[7]
T. T. Yetayew, T. R. Jyothsna, and G. Kusuma, Evaluation of incremental conductance and firefly algorithm for PV MPPT application under partial shade condition, In 2016 IEEE 6th International Conference on Power Systems (ICPES) (2016) 1-6.
DOI: 10.1109/icpes.2016.7584089
Google Scholar
[8]
A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, A review on MPPT techniques of PV system under partial shading condition, Renew. Sustain. Energy Rev. 80 (2017) 854–867.
DOI: 10.1016/j.rser.2017.05.083
Google Scholar
[9]
N. Kumar, B. Singh, J. Wang, and B. K. Panigrahi, A Framework of L-HC and AM-MKF for accurate harmonic supportive control schemes, IEEE Transactions on Circuits and Systems I: Regular Papers 67.12 (2020) 5246-5256.
DOI: 10.1109/tcsi.2020.2996775
Google Scholar
[10]
M. S. Wasim, M. Amjad, S. Habib, M. A. Abbasi, A. R. Bhatti, and S. M. Muyeen, A critical review and performance comparisons of swarm-based optimization algorithms in maximum power point tracking of photovoltaic systems under partial shading conditions, Energy Reports, 8 (2022) 4871–4898.
DOI: 10.1016/j.egyr.2022.03.175
Google Scholar
[11]
K. S. Tey, S. Mekhilef, S. Member, and M. Seyedmahmoudian, Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation, IEEE Transactions on Industrial Informatics 14.10 (2018) 4322-4333.
DOI: 10.1109/tii.2018.2793210
Google Scholar
[12]
S.Bhim, N.Kumar, and B. Ketan Panigrahi. "Steepest descent Laplacian regression based neural network approach for optimal operation of grid supportive solar PV generation." IEEE Transactions on Circuits and Systems II: Express Briefs 68.6 (2020) 1947-1951.
DOI: 10.1109/tcsii.2020.2967106
Google Scholar
[13]
M. M. Farag et al., "An optimized fractional nonlinear synergic controller for maximum power point tracking of the photovoltaic array under abrupt irradiance change," in IEEE Journal of Photovoltaics, 13.2 (2023) 305–314.
DOI: 10.1109/jphotov.2023.3236808
Google Scholar
[14]
D. Sadeq Al-Majidi, F. Maysam Abbod, S. Hamed Al-Raweshidy, A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems, International Journal of Hydrogen Energy, 43.31 (2018) 14158-14171.
DOI: 10.1016/j.ijhydene.2018.06.002
Google Scholar
[15]
C. Gonzalez-Castano, C. Restrepo, S. Kouro, and J. Rodriguez, MPPT Algorithm Based on Artificial Bee Colony for PV System, IEEE Access, 9(2021) 43121–43133.
DOI: 10.1109/access.2021.3066281
Google Scholar
[16]
K. A. Amalo, S. I. Birninkudu, B. B. Bukata, A. T. Salawudeen, and A. A. Ahmad, Cultured bat algorithm for optimized MPPT tracking under different shading conditions, in 2020 International Conference in Mathematics, Computer Engineering, and Computer Science (ICMCECS), (2020) 1–8.
DOI: 10.1109/icmcecs47690.2020.246985
Google Scholar
[17]
D. Fares, M. Fathi, I. Shams, and S. Mekhilef, A novel global MPPT technique based on squirrel search algorithm for PV module under partial shading conditions, Energy Convers. Manag., 230 (2021)113773.
DOI: 10.1016/j.enconman.2020.113773
Google Scholar
[18]
Hadji, Slimane, Jean-Paul Gaubert, and Fateh Krim. Real-time genetic algorithms-based MPPT: study and comparison (theoretical and experimental) with conventional methods. Energies, 11. 2 (2018) 459.
DOI: 10.3390/en11020459
Google Scholar
[19]
Farooqui, S.A., Khan, R. A., Islam, N., & Ahmed, N., Cuckoo search algorithm and artificial neural network-based MPPT: a comparative analysis. In 2021, IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics, and Computer Engineering (UPCON), IEEE, (2021) 1-5.
DOI: 10.1109/upcon52273.2021.9667651
Google Scholar
[20]
A. Feroz, M. Mansoor, Q. Ling, B. Yin, and M. Y. Javed, A Salp-Swarm Optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions, Energy Convers. Manag., 209 (202) 112625.
DOI: 10.1016/j.enconman.2020.112625
Google Scholar
[21]
S. Titri, C. Larbes, K. Toumi, and K. Benatchba, A new MPPT controller based on the Ant Colony Optimization Algorithm for photovoltaic systems under partial shading conditions, Appl. Soft Comput. J., (2017).
DOI: 10.1016/j.asoc.2017.05.017
Google Scholar
[22]
J. Luo, H. Chen, Q. Zhang, Y. Xu, H. Huang, and X. Zhao, A modified grasshopper optimization algorithm with application to financial stress prediction, Appl. Math. Model., 64 (2018) 654–668.
DOI: 10.1016/j.apm.2018.07.044
Google Scholar
[23]
G. Calvinho, J. Pombo, S. Mariano, and M. do Rosario Calado, Design and implementation of MPPT system based on PSO algorithm, in 2018 International Conference on Intelligent Systems (IS), (2018) 733–738.
DOI: 10.1109/is.2018.8710479
Google Scholar
[24]
M. Alshareef, Z. Lin, M. Ma, and W. Cao, Accelerated particle swarm optimization for photovoltaic maximum power point tracking under partial shading conditions, Energies, 12.4 (2019).
DOI: 10.3390/en12040623
Google Scholar
[25]
K. Ishaque and Z. Salam, A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition, IEEE Trans. Ind. Electron., 60.8 (2013) 3195–3206.
DOI: 10.1109/tie.2012.2200223
Google Scholar
[26]
F.B. Pelap, P.D. Dongo, and A.D. Kapim, Optimization of the characteristics of the PV cells using nonlinear electronic components, Sustain. Energy Technol. Assessments, 16 (2016)84-92.
DOI: 10.1016/j.seta.2016.05.005
Google Scholar
[27]
L. Rui. and F. Shi. Control and optimization of residential photovoltaic power generation system with high efficiency isolated bidirectional DC–DC converter. IEEE Access 7 (2019) 116107-116122.
DOI: 10.1109/access.2019.2935344
Google Scholar
[28]
A. Raj, S. R. Arya, and J. Gupta, Solar PV array-based, DC-DC converter with MPPT for low power applications, Reinf. Plast., 34 (2020) 109–119.
DOI: 10.1016/j.ref.2020.05.003
Google Scholar
[29]
Hashim, Norazlan, Zainal Salam, Dalina Johari, and Nik Fasdi Nik Ismail. DC-DC boost converter design for fast and accurate MPPT algorithms in the stand-alone photovoltaic system. International Journal of Power Electronics and Drive Systems 9.3 (2018) 1038.
DOI: 10.11591/ijpeds.v9.i3.pp1038-1050
Google Scholar
[30]
Ayop, Razman, and Chee Wei Tan. Design of boost converter based on maximum power point resistance for photovoltaic applications. Solar Energy 160 (2018) 322–335.
DOI: 10.1016/j.solener.2017.12.016
Google Scholar
[31]
Fan, Xiaochao, et al. High voltage gain DC/DC converter using coupled inductor and VM techniques. IEEE Access 8 (2020) 131975-131987.
DOI: 10.1109/access.2020.3002902
Google Scholar
[32]
H. S. Saad, M. S. M. Elksas, S. F. Saraya, and M. M. Abdelsalam, An improved particle swarm optimization algorithm for maximum power point tracking of photovoltaic cells in normal and under partial shading conditions, MEJ. Mansoura Engineering Journal 46.1 (2021) 10–20.
DOI: 10.21608/bfemu.2021.146311
Google Scholar
[33]
M. Alshareef, Z. Lin, M. Ma, and W. Cao, Accelerated particle swarm optimization for photovoltaic maximum power point tracking under partial shading conditions, Energies, 12.4 (2019) 623.
DOI: 10.3390/en12040623
Google Scholar
[34]
C. Gao, Z. Chen, X. Li, Z. Tian, S. Li, and Z. Wang, Multiobjective discrete particle swarm optimization for community detection in dynamic networks, EPL Europhysics Lett., 122.2 (2018) 28001.
DOI: 10.1209/0295-5075/122/28001
Google Scholar
[35]
S. Saravanan and N. R. Babu, Maximum power point tracking algorithms for the photovoltaic system–A review, Renew. Sustain. Energy Rev., 57 (2016) 192–204.
DOI: 10.1016/j.rser.2015.12.105
Google Scholar
[36]
N. H. Saad, A. A. El-Sattar, and A. E.-A. M. Mansour, Modified particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability, Renew. Energy, 85 (2016) 181–194.
DOI: 10.1016/j.renene.2015.06.029
Google Scholar