Effect of the Solid Concentration in the Suspension on Electrophoretic Deposition (EPD) Coating Parameters

Article Preview

Abstract:

In this study, electrophoretic deposition (EPD) method was used for biphasic calcium phosphate (BCP) coating on 316L stainless steel substrates, using ethanol as a dispersive medium. Deposition was achieved on the cathode at 30 V in 30 seconds at room temperature in variable concentrations (0.5, 0.8, 1, 1.25, 1.5g of BCP powder). After deposition, the coated substrates were sintered at 800 °C for 1 hour. The phase purity and structure of the synthesized powders were checked by X-ray diffraction (XRD). The morphology, structure and phase composition of the coatings were investigated by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results show that deposition weight and thickness increased with increasing concentration. Furthermore, increases in cracks and changes in morphology on coating surfaces as concentration increased at the constant applied voltage during electrophoretic deposition were observed.

You might also be interested in these eBooks

Info:

Pages:

47-54

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Daculsi, Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute, J. Biomater. 19 (1998) 1473–1478.

DOI: 10.1016/s0142-9612(98)00061-1

Google Scholar

[2] H. Nicolazoa, C. Gautierb, M-J. Brandaoc, G. Daculsic and C. Merle, Compatibility study of calcium phosphate biomaterials, J. Biomater. 24 (2003) 255–262.

Google Scholar

[3] T. M. Sridhar, U. K. Mudali, M. Subbaiyan, Sintering atmosphere and temperature effects on hydroxyapatite coated type 316 L stainless steel, J. Corrosion. Sci. 45 (2003) 2337 – 2359.

DOI: 10.1016/s0010-938x(03)00063-5

Google Scholar

[4] S. Kannan, A. Balamurugan, S. Rajeswari, Electrochim, Electrochemical characterization of hydroxyapatite coatings on HNO3 passivated 316L SS for implant applications, Electrochimica Acta, 50 (2005) 2065-(2072).

DOI: 10.1016/j.electacta.2004.09.015

Google Scholar

[5] G. Rondelli, P. Torricelli, M. Fini, R. Giardino, In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications, J. Biomater. 26 (2005) 739-44.

DOI: 10.1016/j.biomaterials.2004.03.012

Google Scholar

[6] K. V. Sudhakar, Metallurgical investigation of a failure in 316L stainless steel orthopaedic implant, J. Eng Failure Anal. 12 (2005) 249–256.

DOI: 10.1016/j.engfailanal.2004.05.004

Google Scholar

[7] C. Wang, J. Ma, C. Wen, Z. Ruifang, Thick hydroxyapatite coatings by electrophoretic deposition, J. Mater. Lett. 57 (2002) 99–105.

Google Scholar

[8] P. M. Cortez, G. V. Gutierrez, Electrophoretic deposition of hydroxyapatite submicron particles at high voltages, J. Mater. Lett. 57 (2004) 1336–1339.

DOI: 10.1016/j.matlet.2003.09.024

Google Scholar

[9] ‏ S. Radice, P. Kern, G. Burki, J. Michler, M. Textor, Electrophoretic deposition of zirconia-bioglass composite coatings for biomedical implants, J. Biomed Mater Res. 82A (2007) 436-444.

DOI: 10.1002/jbm.a.31162

Google Scholar

[10] E. Caroline Victoria and F. D. Gnanam, Synthesis and characterisation of biphasic calcium phosphate, J. Trends Biomater. Artif. Organs. 16 (2002) 12-14.

Google Scholar

[11] A M. A. Abudalazez, S. R. Kasim, A. Ariffin, Z. A. Ahmad, Effect of temperature on BCP ceramics coating on 316L stainless steel using electrophoretic technique. Advanced Materials Research., 501 (2012) 66-70.

DOI: 10.4028/www.scientific.net/amr.501.66

Google Scholar

[12] A M. A. Abudalazez, S. R. Kasim, A. Ariffin, Z. A. Ahmad, Electrophoretic deposition of biphasic calcium phosphate (BCP) coatings on 316L stainless steel at room temperature. Advanced Materials Research., 501 (2012) 169-175.

DOI: 10.4028/www.scientific.net/amr.501.169

Google Scholar

[13] M. Wei, A. J. Ruys, M. V. Swain, B. K. Milthorpe, C. C. Sorrell, Hydroxyapatite-coated metals: Interfacial reactions during sintering, J. Mater. Sci. 16 (2005)101-106.

DOI: 10.1007/s10856-005-5995-6

Google Scholar

[14] F. L. Alexandra. Fabrication and characterization of modified macroporous bioceramics for bone regeneration; Department of Ceramics and Glass Engineering, Thesis (PhD), University of Aveir (2008).

Google Scholar

[15] R. W. N. Nilen, P. W. Richter, The thermal stability of hydroxyapatite in biophasic calcium. phosphate ceramics, J. Mater. Sci: Mater Med. 19 (2008) 1693-1702.

DOI: 10.1007/s10856-007-3252-x

Google Scholar

[16] O. E. Petrov, E. Dyulgerrova , L. Petrov, R. Ropova, Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca-P ceramics, J. Biomater., ‏ 48‏ (2001) 162-167.

DOI: 10.1016/s0167-577x(00)00297-4

Google Scholar

[17] A. Amera, A. M. A. Abudalazez, A. Rashid Ismail, N. Hayati Abd Razak, S. Malik Masudi, Rizal Kasim, Z. Arifin Ahmad, Synthesis and characterization of porous biphasic calcium phosphate scaffold from different porogens for possible bone tissue engineering applications. Science of Sintering, 43 (2011).

DOI: 10.2298/sos1102183a

Google Scholar

[18] P. Sarkar, P. S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and applications to ceramics, J. Am. Ceram. Soc. 7 (1996) 1987-(2002).

Google Scholar

[19] I. Zhitomirsky, Ceramic films using cathodic electrodeposition, Available: www. tms. org=pubs=journals=JOM=0001=Zhitomirsky= Zhitomirsky0001. html. JOM-e 52 (1), (2000).

Google Scholar

[20] I. Zhitomirsky, L. Gal-Or, Electrophoretic deposition of hydroxyapatite, J. Mater. Sci: Mater Med. 8 (1997) 213–219.

Google Scholar

[21] I. Gurappa, Characterization of different materials for corrosion resistance under simulated body fluid conditions, J. Mater. 49 (2002) 73-79.

DOI: 10.1016/s1044-5803(02)00320-0

Google Scholar

[22] O. Albayrak, O. El-Atwani, S. Altintas, Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition, J. Surf. Coat. Tech. 202 (2008).

DOI: 10.1016/j.surfcoat.2007.09.031

Google Scholar

[23] M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition, J. Mater. Sci: Mater Med. 16 (2005) 319-324.

DOI: 10.1007/s10856-005-0630-0

Google Scholar

[24] Z.C. Wang, F. Chen, L.M. Huang, C. J. Lin, Electrophoretic deposition and characterizationof nano-sized hydroxyapatite particles, J. Mater. Sci. 40 (2005) 4955-4957.

DOI: 10.1007/s10853-005-3871-x

Google Scholar