[1]
G. Daculsi, Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute, J. Biomater. 19 (1998) 1473–1478.
DOI: 10.1016/s0142-9612(98)00061-1
Google Scholar
[2]
H. Nicolazoa, C. Gautierb, M-J. Brandaoc, G. Daculsic and C. Merle, Compatibility study of calcium phosphate biomaterials, J. Biomater. 24 (2003) 255–262.
Google Scholar
[3]
T. M. Sridhar, U. K. Mudali, M. Subbaiyan, Sintering atmosphere and temperature effects on hydroxyapatite coated type 316 L stainless steel, J. Corrosion. Sci. 45 (2003) 2337 – 2359.
DOI: 10.1016/s0010-938x(03)00063-5
Google Scholar
[4]
S. Kannan, A. Balamurugan, S. Rajeswari, Electrochim, Electrochemical characterization of hydroxyapatite coatings on HNO3 passivated 316L SS for implant applications, Electrochimica Acta, 50 (2005) 2065-(2072).
DOI: 10.1016/j.electacta.2004.09.015
Google Scholar
[5]
G. Rondelli, P. Torricelli, M. Fini, R. Giardino, In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications, J. Biomater. 26 (2005) 739-44.
DOI: 10.1016/j.biomaterials.2004.03.012
Google Scholar
[6]
K. V. Sudhakar, Metallurgical investigation of a failure in 316L stainless steel orthopaedic implant, J. Eng Failure Anal. 12 (2005) 249–256.
DOI: 10.1016/j.engfailanal.2004.05.004
Google Scholar
[7]
C. Wang, J. Ma, C. Wen, Z. Ruifang, Thick hydroxyapatite coatings by electrophoretic deposition, J. Mater. Lett. 57 (2002) 99–105.
Google Scholar
[8]
P. M. Cortez, G. V. Gutierrez, Electrophoretic deposition of hydroxyapatite submicron particles at high voltages, J. Mater. Lett. 57 (2004) 1336–1339.
DOI: 10.1016/j.matlet.2003.09.024
Google Scholar
[9]
S. Radice, P. Kern, G. Burki, J. Michler, M. Textor, Electrophoretic deposition of zirconia-bioglass composite coatings for biomedical implants, J. Biomed Mater Res. 82A (2007) 436-444.
DOI: 10.1002/jbm.a.31162
Google Scholar
[10]
E. Caroline Victoria and F. D. Gnanam, Synthesis and characterisation of biphasic calcium phosphate, J. Trends Biomater. Artif. Organs. 16 (2002) 12-14.
Google Scholar
[11]
A M. A. Abudalazez, S. R. Kasim, A. Ariffin, Z. A. Ahmad, Effect of temperature on BCP ceramics coating on 316L stainless steel using electrophoretic technique. Advanced Materials Research., 501 (2012) 66-70.
DOI: 10.4028/www.scientific.net/amr.501.66
Google Scholar
[12]
A M. A. Abudalazez, S. R. Kasim, A. Ariffin, Z. A. Ahmad, Electrophoretic deposition of biphasic calcium phosphate (BCP) coatings on 316L stainless steel at room temperature. Advanced Materials Research., 501 (2012) 169-175.
DOI: 10.4028/www.scientific.net/amr.501.169
Google Scholar
[13]
M. Wei, A. J. Ruys, M. V. Swain, B. K. Milthorpe, C. C. Sorrell, Hydroxyapatite-coated metals: Interfacial reactions during sintering, J. Mater. Sci. 16 (2005)101-106.
DOI: 10.1007/s10856-005-5995-6
Google Scholar
[14]
F. L. Alexandra. Fabrication and characterization of modified macroporous bioceramics for bone regeneration; Department of Ceramics and Glass Engineering, Thesis (PhD), University of Aveir (2008).
Google Scholar
[15]
R. W. N. Nilen, P. W. Richter, The thermal stability of hydroxyapatite in biophasic calcium. phosphate ceramics, J. Mater. Sci: Mater Med. 19 (2008) 1693-1702.
DOI: 10.1007/s10856-007-3252-x
Google Scholar
[16]
O. E. Petrov, E. Dyulgerrova , L. Petrov, R. Ropova, Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca-P ceramics, J. Biomater., 48 (2001) 162-167.
DOI: 10.1016/s0167-577x(00)00297-4
Google Scholar
[17]
A. Amera, A. M. A. Abudalazez, A. Rashid Ismail, N. Hayati Abd Razak, S. Malik Masudi, Rizal Kasim, Z. Arifin Ahmad, Synthesis and characterization of porous biphasic calcium phosphate scaffold from different porogens for possible bone tissue engineering applications. Science of Sintering, 43 (2011).
DOI: 10.2298/sos1102183a
Google Scholar
[18]
P. Sarkar, P. S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and applications to ceramics, J. Am. Ceram. Soc. 7 (1996) 1987-(2002).
Google Scholar
[19]
I. Zhitomirsky, Ceramic films using cathodic electrodeposition, Available: www. tms. org=pubs=journals=JOM=0001=Zhitomirsky= Zhitomirsky0001. html. JOM-e 52 (1), (2000).
Google Scholar
[20]
I. Zhitomirsky, L. Gal-Or, Electrophoretic deposition of hydroxyapatite, J. Mater. Sci: Mater Med. 8 (1997) 213–219.
Google Scholar
[21]
I. Gurappa, Characterization of different materials for corrosion resistance under simulated body fluid conditions, J. Mater. 49 (2002) 73-79.
DOI: 10.1016/s1044-5803(02)00320-0
Google Scholar
[22]
O. Albayrak, O. El-Atwani, S. Altintas, Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition, J. Surf. Coat. Tech. 202 (2008).
DOI: 10.1016/j.surfcoat.2007.09.031
Google Scholar
[23]
M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition, J. Mater. Sci: Mater Med. 16 (2005) 319-324.
DOI: 10.1007/s10856-005-0630-0
Google Scholar
[24]
Z.C. Wang, F. Chen, L.M. Huang, C. J. Lin, Electrophoretic deposition and characterizationof nano-sized hydroxyapatite particles, J. Mater. Sci. 40 (2005) 4955-4957.
DOI: 10.1007/s10853-005-3871-x
Google Scholar