[1]
F. Mücklich, H. Janocha, Smart materials-the IQ of materials in systems, Z. Metallkd. 87 (1996) 357 – 364.
DOI: 10.1515/ijmr-1996-870507
Google Scholar
[2]
L. Taïbi-Benziada, A. Mezroua, R. Von Der Mühll, CaTiO3 related materials for resonators, Ceramics Silikaty 48 (4) (2004) 180 – 183.
Google Scholar
[3]
L. Taïbi-Benziada, Ferroelectric ceramics related to BaTiO3 for Z5U multilayer capacitors, Mater. Sci. Forum 492 – 493 (2005) 109-114.
DOI: 10.4028/www.scientific.net/msf.492-493.109
Google Scholar
[4]
E. Defaÿ, D. Wolozan, J.P. Blanc, E. Serret, P. Garrec, S. Verrun, D. Pellissier, P. Delpech, J. Guillan, B. André, L. Ulmer, M. Aïd, P. Ancey, High pass filter with above IC integrated SrTiO3 high K MIM capacitors, Solid State Electronics 51 (2007) 1624 – 1628.
DOI: 10.1016/j.sse.2007.09.036
Google Scholar
[5]
Y. Luo, X. Liu, X. Li, G. Chen, BaBiO3-doped SrTiO3-based NTC thermistors, Journal of Alloys and Compounds 433 (2007) 221 – 224.
DOI: 10.1016/j.jallcom.2006.06.028
Google Scholar
[6]
Y. Higuchi, Y. Sugimoto, J. Harada, H. Tamura, LTCC system with new high-εr and high-Q material co-fired with conventional low-εr base material for wireless communications, Journal of the European Ceramic Society 27 (2007) 2785 – 2788.
DOI: 10.1016/j.jeurceramsoc.2006.11.048
Google Scholar
[7]
R.A. Dorey, S.A. Rocks, F. Dauchy, D. Wang, F. Bortolani, F. Hugo, Integrating functional ceramics into Microsystems, Journal of the European Ceramic Society 28 (2008) 1397 – 1403.
DOI: 10.1016/j.jeurceramsoc.2007.12.003
Google Scholar
[8]
T. Hino, N. Matsumoto, M. Nishida, T. Araki, PLD of X7R for thin film capacitors, Applied Surface Science 254 (2008) 2638 – 2641.
DOI: 10.1016/j.apsusc.2007.10.001
Google Scholar
[9]
Y.C. Liang, Effect of conductive oxide buffering on structural and nanoscale electrical properties of ultrathin SrTiO3 films on Pt electrodes, Journal of Crystal Growth 312 (2010) 1610 – 1616.
DOI: 10.1016/j.jcrysgro.2010.01.021
Google Scholar
[10]
L. Taïbi-Benziada, H.S. Hilal, R. Von Der Mühll, Low temperature sintering and dielectric properties of (Ba,Ca)(Ti,Li)(O,F)3ceramics with high permittivity, Solid State Sciences 8 (2006) 922 – 926.
DOI: 10.1016/j.solidstatesciences.2006.01.017
Google Scholar
[11]
M. Meyar, L. Taïbi-Benziada, Multifunctional ceramics Ba1-xSrx(Ti1-xLix)O3-3xF3x, Journal of the European Ceramic Society 27 (2007) 1097 – 1100.
DOI: 10.1016/j.jeurceramsoc.2006.05.035
Google Scholar
[12]
X. Wang, L. Zhang, H. Liu, J. Zhai, X. Yao, Dielectric nonlinear properties of BaTiO3 – CaTiO3 – SrTiO3 ceramics near the solubility limit, Materials Chemistry and Physics 112 (2008) 675 – 678.
DOI: 10.1016/j.matchemphys.2008.06.020
Google Scholar
[13]
R.C. Chang, S.Y. Chu, Y.P. Wong, C.S. Hong, H.H. Huang, The effects of sintering temperature on the properties of lead-free (Na0.5k0.5)NbO3 – SrTiO3 ceramics, Journal of Alloys and Compounds 456 (2008) 308 – 312.
DOI: 10.1016/j.jallcom.2007.02.033
Google Scholar
[14]
C.L. Huang, Y.B. Chen, M.L. Lee, Influence of ZnO additions to 0.96Mg0.05Co0.05TiO3 – 0.04SrTiO3 ceramics on sintering behavior and microwave dielectric properties, Journal of Alloys and Compounds 469 (2009) 357 – 361.
DOI: 10.1016/j.jallcom.2008.01.105
Google Scholar
[15]
L. Taïbi-Benziada, S. Nemouchi, Lead-free CaTiO3 – based ceramics: sintering, phase transitions and dielectric properties, Materials Science Forum 636 – 637 (2010) 111-118.
DOI: 10.4028/www.scientific.net/msf.636-637.111
Google Scholar
[16]
Y.C. Liang, Effect of conductive oxide buffering on structural and nanoscale electrical properties of ultrathin SrTiO3 films on Pt electrodes, Journal of Crystal Growth 312 (2010) 1610 – 1616.
DOI: 10.1016/j.jcrysgro.2010.01.021
Google Scholar
[17]
J.H. Qiu, Effect of domain wall on the dielectric properties of the BaTiO3/SrTiO3 superlattices, Solid State Communications 150 (2010) 1052 – 1055.
DOI: 10.1016/j.ssc.2010.03.001
Google Scholar
[18]
K.I. Kakimoto, J. Furuhashi, H. Ogawa, M. Aki, Microstucture and dielectric response of (Ba,Sr)TiO3 filler-dispersed resin composites, Journal of the European Ceramic Society 30 (2010) 359 – 363.
DOI: 10.1016/j.jeurceramsoc.2009.07.022
Google Scholar
[19]
X. H. Zhu, E. Defaÿ, B. Guigues, G. Le Rhun, C. Dubarry, M. Aïd, Low temperature fabrication of Ba1-xSrxTiO3 thin films with good dielectric properties on platinized silicon substrates, Journal of the European Ceramic Society 30 (2010) 471 – 474.
DOI: 10.1016/j.jeurceramsoc.2009.05.010
Google Scholar
[20]
D. Roy, J. Peng, S.B. Krupanidhi, Excimer laser ablated strontium titanate thin films for dynamic random access memory applications, Appl. Phys. Letters 60 (1992) 2478 – 2480.
DOI: 10.1063/1.106938
Google Scholar
[21]
P.C. Joshi, S.B. Krupanidhi, Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications, J. Appl. Phys. 73 (1993) 7627 – 7634.
DOI: 10.1063/1.353960
Google Scholar
[22]
J.F. Scott, Ferroelectric memories, Phys. World 8 (1995) 46 – 50.
Google Scholar
[23]
R.F. Jones, Jr.P. Zurcher, P. Chu, D.J Taylor, Y.T. Lii, B. Jiang, P.D. Maniar, S.J. Gillespie, Memory applications based on ferroelectric and high-permittivity dielectric thin films, Microelectron. Eng. 29 (1995) 3 – 10.
DOI: 10.1016/0167-9317(95)00106-9
Google Scholar
[24]
T. Sumi, Y. Judai, K. Hirano, T. Ito, T. Mikawa, M. Takeo, Ferroelectric non-volatile memory technology and its application. Solid state devices and materials, Jap. J. Appl. Phys. 35 (1996) 1516 – 1520.
DOI: 10.1143/jjap.35.1516
Google Scholar
[25]
J.F. Scott, New developments on FRAMs: [3D] structures and all-perovskite FETs, Mater. Sci. Eng. 120B (2005) 6 – 12.
Google Scholar
[26]
T. Mitsui, W.B. Westphal, Dielectric and X-ray studies of CaxBa1-xTiO3 and CaxSr1-xTiO3, Phys. Rev. 124 (1961) 1354 – 1359.
Google Scholar
[27]
H. Unoki, T. Sakudo, Electron spin resonance of Fe3+ in SrTiO3 with special reference to the 110K phase transition, J. Phys. Soc. Japn. 23 (1967) 546 – 552.
DOI: 10.1143/jpsj.23.546
Google Scholar
[28]
P.A. Fleury, J.F. Scott, J.M. Worlock, Soft phonon modes and the 110K phase transition in SrTiO3, Phys. Rev. Letters 21 (1968) 16 – 19.
Google Scholar
[29]
G. Shirane, K. Yamada, Lattice-dynamical study of the 110K phase transition in SrTiO3, Phys. Rev. 177 (1969) 858 – 863.
Google Scholar
[30]
F.W. Lytle, X-ray diffractometry of low-temperature phase transformation in strontium titanate, J. Appl. Phys. 35 (1964) 2212 – 2215.
DOI: 10.1063/1.1702820
Google Scholar
[31]
T. Sakudo, H. Unoki, Dielectric properties of SrTiO3 at low temperatures, Phys. Rev. Letters 26 (1971) 851 – 853.
Google Scholar
[32]
K.A. Müller, H. Burkard, SrTiO3: an intrinsic quantum paraelectric below 4K, Phys. Rev. 19B (1979) 3593 – 3602.
Google Scholar
[33]
A.S.Jr. Barker, M. Tinkham, Far – Infrared ferroelectric vibration mode in SrTiO3, Phys. Rev. 125 (5) (1962) 1527 – 1530.
Google Scholar
[34]
H. Kermoun, L. Benziada-Taïbi, Etude crystallographique de nouvelles phases oxyfluorées dérivées de SrTiO3, J. Fluor. Chem. 99 (1999) 119 –122.
DOI: 10.1016/s0022-1139(99)00115-3
Google Scholar
[35]
A. Benziada, J. Ravez, Utilisation de l'eutectique de composition MF2 - 4LiF (M = Sr, Ba) en vue du frittage de BaTiO3 à basse température en phase liquide, Ann. Chim. Fr. 13 (1988) 63–69.
Google Scholar
[36]
L. Benziada, J. Claverie, Influence of the eutectic composition 1CaF2-4LiF on the sintering and the dielectric properties of BaTiO3, Ferroelectrics 189 (1996) 129 – 138.
DOI: 10.1080/00150199608213412
Google Scholar
[37]
K. Bethe, F. Welz, Preparation and properties of (Ba, Sr)TiO3 single crystals, Mat. Res. Bull. 6 (1971) 209 – 218.
DOI: 10.1016/0025-5408(71)90032-8
Google Scholar
[38]
E.A. Wood, Polymorphism in potassium niobate, sodium niobate and other ABO3 compounds, Act. Cryst. 4 (1951) 353 – 362.
DOI: 10.1107/s0365110x51001112
Google Scholar
[39]
F. Jona, G. Shirane, F. Mazzi, R. Pepinsky, X-ray and neutron diffraction study of antiferroelectric lead zirconate, PbZrO3, Phys. Rev. 105 (1957) 849 – 856.
DOI: 10.1103/physrev.105.849
Google Scholar
[40]
R. Ranjan, D. Pandey, W. Schuddinck, O. Richard, P. Meulenaere, J.Van. De. Landuyt, G.Van. Tendeloo, Evolution of crystallographic phases in (Sr1-xCax)TiO3, J. Solid State Chem. 162 (2001) 20-28.
DOI: 10.1006/jssc.2001.9336
Google Scholar
[41]
S. Anwar, N.P. Lalla, Electron microscopic studies of the antiferroelectric phase in Sr0.60Ca0.40TiO3 ceramic, J. Solid State Chem. 181 (2008) 997 – 1004.
DOI: 10.1016/j.jssc.2008.02.004
Google Scholar
[42]
J.M. Haussonne, G. Desgardin, P.H. Bajolet, B. Raveau, Barium titanate perovskite sintered with lithium fluoride, J. Am. Ceram. Soc. 66 (1983) 801 – 807.
DOI: 10.1111/j.1151-2916.1983.tb10566.x
Google Scholar
[43]
A. Benziada-Taïbi, J. Ravez, P. Hagenmuller, Influence de l'ajout de BaLiF3 sur les propriétés cristallographiques et diélectriques de BaTiO3, J. Fluor. Chem. 26 (1984) 395 – 404.
DOI: 10.1016/s0022-1139(00)80939-2
Google Scholar
[44]
J. Ravez, J.P. Chaminade, T. Sekya, A. Benziada, C. Houttemane, M. Pouchard, Low temperature crystal growth and ceramic sintering of BaTiO3 – type oxyfluorides, Jpn. J. Appl. Phys. 24 (1985) 430 – 432.
DOI: 10.7567/jjaps.24s2.430
Google Scholar
[45]
G. Desgardin, J.M. Haussonne, BaLiF3 – a new sintering agent for BaTiO3 – based capacitors, J. Am. Ceram. Soc. Bull. 64 (4) (1985) 564 – 570.
Google Scholar
[46]
H. Yamamura, N. Okitsu, K. Kakinuma, Perovskite-type oxyfluoride phases in the ABO3 – BaLiF3 systems (A = Ba, Ca and B = Ti, Zr), Journal of the Ceramic Society of Japan 114 (12) (2006) 1160 – 1163.
DOI: 10.2109/jcersj.114.1160
Google Scholar
[47]
H. Naghib-zadeh, C. Glitzky, I. Dörfel, T. Rabe, Low temperature sintering of barium titanate ceramics assisted by addition of lithium fluoride-containing sintering additives, Journal of the European Ceramic Society 30 (2010) 81 – 86.
DOI: 10.1016/j.jeurceramsoc.2009.07.005
Google Scholar