Performance Analysis and Comparison of Air Standard Diesel and Diesel-Atkinson Cycles

Article Preview

Abstract:

This study is concerned with the performance analysis and comparison of air standard Diesel and Diesel-Atkinson cycles with heat-transfer loss, friction like term loss and variable specific-heat ratio of the working fluid based on finite-time thermodynamics. Also numerical examples are detailed to show the relations between the output power and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the output power and the thermal efficiency of both cycles. Furthermore, the effects of variable specific-heat ratio of the working fluid, heat transfer and the friction-like term loss on the performance of both irreversible cycles are analyzed. Comparison of the performance of cycles shows that the heat efficiency and the output power of an air standard Diesel-Atkinson are higher than the Diesel ones and the points of maximum output power and thermal efficiency of Diesel-Atkinson cycle occur at the lower compression ratio. Reduction of Nox is another advantage of Diesel-Atkinson cycle. The results obtained in this paper provide guidance for the design of Diesel and Diesel-Atkinson engines.

You might also be interested in these eBooks

Info:

Pages:

57-65

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hermann, Geometry, Physics and Systems, Dekker, New York, 1973.

Google Scholar

[2] P. Salamon, B. Andresen, R.S. Berry, Thermodynamics in finite time. II. Potentials for finite-time processes, Phys. Rev. A. 14 (1977) 2094-2102.

DOI: 10.1103/physreva.15.2094

Google Scholar

[3] M. Mozurkewich, R.S. Berry, Finite-time thermodynamics: Engine performance improved by optimized piston motion, J. Appl. Phys. 78 (1981) 1986–1988.

DOI: 10.1073/pnas.78.4.1986

Google Scholar

[4] L. Chen, C. Wu, F. Sun, Finite-time thermodynamic optimization or entropy-generation minimization of energy systems, J. Non-Equil. Thermody. 24 (1999) 327–359.

DOI: 10.1515/jnetdy.1999.020

Google Scholar

[5] A. Bejan, Entropy-generation minimization: the new thermodynamics of finite-size devices and finite time processes, J. Appl. Phys. 79 (1996) 1191–1218.

DOI: 10.1063/1.362674

Google Scholar

[6] L. Chen, F. Sun, Advances in finite-time thermodynamics: analysis and optimization. NewYork: Nova Science Publishers, 2004.

Google Scholar

[7] K.H. Hoffman, S.J. Watowich, R.S. Berry, Optimal paths for thermodynamic systems: the ideal Diesel cycle, J. Appl. Phys. 58 (1985) 2125–2134.

DOI: 10.1063/1.335977

Google Scholar

[8] M. Mozurkewich, R.S. Berry, Optimal paths for thermodynamic systems: the ideal Otto-cycle, J. Appl. Phys. 53 (1982) 34–42.

DOI: 10.1063/1.329894

Google Scholar

[9] B.M. Aizenbud, Y.B. Band, O. Kafri, Optimization of a model internal-combustion engine, J. Appl. Phys. 53 (1982) 1277–1282.

DOI: 10.1063/1.330633

Google Scholar

[10] L. Chen, F. Sun, C. Wu, Optimal expansion of a heated working-fluid with linear phenomenological heat-transfer, Energy Conversion and Management 39 (1998) 149–156.

DOI: 10.1016/s0196-8904(96)00231-2

Google Scholar

[11] F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power-output, Am. J. Phys. 43 (1975) 22–24.

DOI: 10.1119/1.10023

Google Scholar

[12] L. Chen, J. Lin, F. Sun, C. Wu, Efficiency of an Atkinson engine at maximum power-density, Energy Conversion and Management 39 (1998) 337–341.

DOI: 10.1016/s0196-8904(96)00195-1

Google Scholar

[13] A. Al-Sarkhi, B.A. Akash, J.O. Jaber, M.S. Mohsen, E. Abu-Nada, Efficiency of a Miller engine at maximum power-density, Int. Commun. Heat. Mass. Tran. 29 (2002) 1157–1159.

DOI: 10.1016/s0735-1933(02)00444-x

Google Scholar

[14] B. Sahin, U. Kesgin, A. Kodal, N. Vardar, Performance optimization of a new combined power-cycle based on a power-density analysis of the Dual cycle, Energy Conversion and Management 43 (2002) 2019–2031.

DOI: 10.1016/s0196-8904(01)00149-2

Google Scholar

[15] X. Qin, L. Chen, F. Sun, The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles, Eur. J. Phys. 24 (2003) 359–366.

DOI: 10.1088/0143-0807/24/4/354

Google Scholar

[16] Y. Ge, L. Chen, F. Sun, C. Wu, Reciprocating heat-engine cycles, Applied Energy 81 (2005) 397–408.

DOI: 10.1016/j.apenergy.2004.09.007

Google Scholar

[17] Y. Ge, L. Chen, F. Sun, C. Wu, Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid, Applied Energy 83 (2006) 1210–1221.

DOI: 10.1016/j.apenergy.2005.12.003

Google Scholar

[18] Y. Zhao, J. Chen, Performance analysis and parametric optimum criteria of an irreversible Atkinson heat-engine, Applied Energy 83 (2006) 789–800.

DOI: 10.1016/j.apenergy.2005.09.007

Google Scholar

[19] P. Wang, S.S. Hou. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions, Energy Conversion and. Management 46 (2005) 2637–2655.

DOI: 10.1016/j.enconman.2004.11.005

Google Scholar

[20] A. Al-Sarkhi, B.A. Akash, E. Abu-Nada, I. Al-Hinti, Efficiency of Atkinson Engine at Maximum Power Density using Temperature Dependent Specific Heats, Jordan J. Mech. and Indust. Eng. 2 (2008) 71-75.

DOI: 10.1016/j.icheatmasstransfer.2006.06.014

Google Scholar

[21] J.C. Lin, S.S. Hou, Influence of heat loss on the performance of an air-standard Atkinson cycle, Applied Energy 84 (2007) 904–920.

DOI: 10.1016/j.apenergy.2007.02.010

Google Scholar

[22] S.S. Hou, Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations, Energy Conversion and. Management 48 (2007) 1683–1690.

DOI: 10.1016/j.enconman.2006.11.001

Google Scholar

[23] V. Ganesan, Internal Combustion Engines, New Delhi, Tata McGraw-Hill, 1993.

Google Scholar

[24] L. Chen, T. Zheng, F. Sun, C. Wu, The power and efficiency characteristics for an irreversible Otto cycle, Int. J. Ambient. Energy 24 (2003) 195–200.

DOI: 10.1080/01430750.2003.9674923

Google Scholar

[25] J. Lin, L. Chen, C. Wu, F. Sun, Finite-time thermodynamic performance of a Dual cycle, Int. J. Energy Res. 23 (1999) 765–772.

DOI: 10.1002/(sici)1099-114x(199907)23:9<765::aid-er513>3.0.co;2-z

Google Scholar

[26] L. Chen, T. Zheng, F. Sun, C. Wu, The power and efficiency characteristics for an irreversible Otto cycle, Int. J. Ambient. Energy. 24 (2003) 195–200.

DOI: 10.1080/01430750.2003.9674923

Google Scholar

[27] L. Chen, F. Sun, C. Wu, The optimal performance of an irreversible Dual-cycle, Applied Energy 79 (2004) 3–14.

DOI: 10.1016/j.apenergy.2003.12.005

Google Scholar

[28] A. Al-Sarkhi, B.A. Akash, J.O. Jaber, M.S. Mohsen, E. Abu-Nada, Efficiency of a Miller engine at maximum power-density, Int. Commun. Heat Mass Tran. 29 (2002) 1157–1159.

DOI: 10.1016/s0735-1933(02)00444-x

Google Scholar

[29] M.B. Abbassi, M.H. Gahruei, S. Vahidi, Comparison of the Performances of Biodiesel, Diesel, and Their Compound in Air Standard Diesel-Atkinson Cycle, J. American Scien. 8(1) (2012) 223-229.

DOI: 10.4028/www.scientific.net/jera.9.57

Google Scholar

[30] C. Cheung, S. Lei, Z. Huang. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol, Atmospheric Environment. 43 (2009) 4865-4872.

DOI: 10.1016/j.atmosenv.2009.07.021

Google Scholar