[1]
H.S. Kim, Y. Estrin, and M.B. Bush: Acta Mater. 48 (2000), p.493.
Google Scholar
[2]
H.S. Kim: Scripta mater. 39 (1998), p.1057.
Google Scholar
[3]
H.S. Kim, Y. Estrin, and M.B. Bush: Mat. Sci. Eng. A316 (2001), p.195.
Google Scholar
[4]
Y. Estrin, in: A.S. Krausz, K. Krausz (Eds. ), Unified Constitutive Laws of Plastic Deformation, Academic Press, 1996, p.69.
DOI: 10.1016/b978-012425970-6/50001-1
Google Scholar
[5]
C. Herring: J. Appl. Phys. 21 (1950), p.437.
Google Scholar
[6]
R.L. Coble: J. Appl. Phys. 34 (1963), p.1679.
Google Scholar
[7]
N. Wang, Z. Wang, K.T. Aust, and U. Erb: Acta Metall. Mater. 43 (1995), p.519.
Google Scholar
[8]
F. Spaepen: Acta Metall. 25 (1977), p.407.
Google Scholar
[9]
H. Gleiter: Prog. Mater. Sci. 33 (1989), p.224.
Google Scholar
[10]
H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982, p.21.
Google Scholar
[11]
P.G. Sanders, J.A. Eastman, and J.R. Weertman, in: C. Suryanarayana, J. Singh, and F.H. Froes (Eds. ), Pressing and Properties of Nanocrystalline Materials, TMS, Warrendale, PA, 1996, p.397.
Google Scholar
[12]
C.J. Youngdahl, P.G. Sanders, J.A. Eastman, and J.R. Weertman: Scripta mater. 37 (1997), p.809.
Google Scholar
[13]
R. Suryanarayana, C.A. Frey, S.M.L. Sastry, B.E. Waller, S.E. Bates, and W.E. Buhro: J. Mater. Res. 11 (1996), p.439.
Google Scholar
[14]
G.W. Nieman, J.R. Weertman, and R.W. Siegel: J. Mater. Res. 6 (1991), p.1012.
Google Scholar
[15]
P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater. 45 (1997), p.4019.
Google Scholar
[16]
A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scr. Metall. 23 (1989), p.1679.
Google Scholar
[17]
H.W. Höppel and R.Z. Valiev: Z. Metallkd. 93 (2002), p.641.
Google Scholar
[18]
H.S. Kim and Y. Estrin: Appl. Phys. Lett. 79 (2001), p.4117.
Google Scholar