Vapor Phase Growth of Carbon Microcoils / Nanocoils

Article Preview

Abstract:

The carbon microcoils and carbon nanocoils were prepared by the catalytic pyrolysis of acetylene under the Ni and/or Fe-containing catalysts, and the growth pattern, morphology and growth mechanism of the carbon coils were examined in detail. The inner coil diameter of carbon microcoils are of several µm and coil gap from zero to several µm. The inner coil diameter of carbon nanocoils are from zero to several ten nm and coil gap from zero to several nm. The carbon microcoils are generally of double helix coils such as DNA while carbon nanocoils were single helix coils such as α-helix proteins, with spring-like or twisted forms. A catalyst grain was usually observed on the tip of carbon coil. The carbon nanocoils are almost amorphous and can be graphitized by the high temperature heat-treatment.

You might also be interested in these eBooks

Info:

Pages:

387-0

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund: Science of Fullerenes and Carbon Nanotubes, (Academic Press Publications, New York 1996).

DOI: 10.1080/15363839708015913

Google Scholar

[2] A. K. Arora, T. R. Ravindran, G. L. N. Reddy, A. K. Sikder and D. S. Misra: Diamond and Related Materials, Vol. 10 (2001), p.1477.

Google Scholar

[3] B. V. Spitsyn, L. L. Bouilov and B. V. Derjaguin: Progress in Crystal Growth and Characterization, Vol. 17 (1988), p.79.

DOI: 10.1016/0146-3535(88)90001-9

Google Scholar

[4] S. Iijima: Nature, Vol. 354 (1991), p.56.

Google Scholar

[5] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita and M. S. Dresselhaus: Carbon, Vol. 39 (2001), p.1287.

DOI: 10.1016/s0008-6223(00)00295-5

Google Scholar

[6] M. Endo, Y. A. Kim, T. Takeda, S. H. Hong, T. Matusita, T. Hayashi, M. S. Dresselhaus: Carbon, Vol. 39 (2001), p. (2003).

Google Scholar

[7] S. Motojima, M. Kawakuchi and K. Nozaki: Carbon, Vol. 29 (1991), p.379.

Google Scholar

[8] S. Mojima, S. Kagiya and H. Iwanaga: J. Mater. Sci., Vol. 31 (1996), p.4641.

Google Scholar

[9] X. Chen, T. Saito, M. Kusunoki and S. Motojima: J. Mater. Res., Vol. 14 (1999), p.4329.

Google Scholar

[10] X. Chen and S. Motojima: Carbon, Vol. 37(1999), p.1817.

Google Scholar

[11] X. Chen, S. Motojima and H. Iwanaga: Carbon, Vol. 37(1999), p.1825.

Google Scholar

[12] X. Chen, W. In-Hwang, S. Shimada, M. Fujii, H. Iwanaga and S. Motojima: J. Mater. Res., Vol. 15 (2000), p.808.

Google Scholar

[13] S. Motojima, Y. Kojima, T. Hamamoto, N. Ueshima and H. Iwanaga: Electrochem. Soc. Proc., Vol. 97-39 (1997), p.595.

Google Scholar

[14] X. Chen, S. Motojima and H. Iwanaga: Carbon, Vol. 37 (1999), p.1825.

Google Scholar

[15] S. Motojima, Y. Noda, S. Hoshiya and Y. Hishikawa: Carbon, Vol. 94 (2003), p.2325.

Google Scholar

[16] Xinqi Chen, Sulin Zhang, Dmitriy A. Dikin, Weiqiang Ding and Rodney S. Ruoff: Nanoletters, Vol. 3 (2003), p.1299.

Google Scholar

[17] Y. Takeuchi: Contrast media and imaging method using carbon microcoil, Jpn. Kokai Tokkyo Koho JP 2001106642. Fig. 8. SEM image of twisted nanocoils grown over iron alloy at 600-700℃. Fig. 9. A growth tip of twisted nanocoil. LLLL RRRR LLLL Fig. 7. TEM image of the single-helix spring- like coils and its electronic diffraction pattern. 200 nm Fig. 10. TEM image of a twisted nanocoil.

Google Scholar