Molecular Dynamics Study of Nonequilibrium [112] Tilt Grain Boundaries in Ni and their Relaxation under Cyclic Deformation

Abstract:

Article Preview

Atomic structure of nonequilibrium [112] tilt grain boundaries in nickel containing disclination dipoles is studied by means of molecular dynamics simulations. Initial systems for simulations are constructed by joining together pieces of two bicrystals one of which contains a symmetric tilt GB S=11 / 62.96° and the other a GB S=105 / 57.12°, or S=125 / 55.39°, or S=31 / 52.20°, so disclination dipoles with strengths w = 5.84°, 7.58° and 10.76° are created. Stress maps plotted after relaxation at zero temperature indicate the presence of high long-range stresses induced by disclination dipoles. Excess energy of GBs due to the nonequilibrium structure is calculated. Effect of oscillating tension-compression stresses on the nonequilibrium GB structure is studied at temperature T = 300 K. The simulations show that the oscillating stress results in a generation of partial lattice dislocations by the GB, their glide across grains and sink at appropriate surfaces that results in a compensation of the disclination stress fields and recovery of an equilibrium GB structure and energy.

Info:

Edited by:

Mikhail D. Starostenkov, Aleksandr I. Potekaev, Sergey V. Dmitriev and Prof. P. Ya. Tabakov

Pages:

1-10

Citation:

A. A. Nazarov and R.’ T. Murzaev, "Molecular Dynamics Study of Nonequilibrium [112] Tilt Grain Boundaries in Ni and their Relaxation under Cyclic Deformation", Journal of Metastable and Nanocrystalline Materials, Vol. 30, pp. 1-10, 2018

Online since:

January 2018

Export:

Price:

$41.00

[1] O.A. Kaibyshev, R.Z. Valiev, Grain Boundaries and Properties of Metals, Metallurgia Publ., Moscow, 1987 (In Russian).

[2] A.A. Nazarov, A.E. Romanov, R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries, Acta Metall. Mater. 41 (1993) 1033-1040.

DOI: https://doi.org/10.1016/0956-7151(93)90152-i

[3] A.A. Nazarov, R.R. Mulyukov, Nanostructured materials, in: W. Goddard, D. Brenner, S. Lyshevski, G. Iafrate (Eds. ), Handbook of Nanoscience, Engineering, and Technology, CRC Press, Boca Raton, 2002, pp.22-41.

[4] S.R. Phillpot, D. Wolf, H. Gleiter, Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material, J. Appl. Phys. 78 (1995) 847-861.

DOI: https://doi.org/10.1063/1.360275

[5] A.A. Nazarov, Internal stress effect on the grain boundary diffusion in submicrocrystalline metals, Philos. Mag. Lett. 80 (2000) 221-228.

[6] V.V. Rybin, Large Plastic Deformations and Fracture of Metals, Metallurgia Publ., Moscow, 1986 (In Russian).

[7] V.V. Rybin, A.A. Zisman, N. Yu. Zolotarevsky, Junction disclinations in plastically deformed crystals, Acta Metall. Mater. 41 (1993) 2211-2217.

DOI: https://doi.org/10.1016/0956-7151(93)90390-e

[8] A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Random disclination ensembles in ultrafine-grained materials produced by severe plastic deformation, Scripta Mater. 34 (1996) 729-734.

DOI: https://doi.org/10.1016/1359-6462(95)00573-0

[9] A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation, Acta Mater. 50 (2002) 3927-3939.

DOI: https://doi.org/10.1016/s1359-6454(02)00195-7

[10] G.J. Tucker, D.L. McDowell, Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations, Int. J. Plast. 27 (2011) 841-857.

DOI: https://doi.org/10.1016/j.ijplas.2010.09.011

[11] K. Zhou, M.S. Wu, A.A. Nazarov, Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire, Phys. Rev. B 73 (2006) 045410-1 - 045410-11.

DOI: https://doi.org/10.1103/physrevb.73.045410

[12] K. Zhou, A.A. Nazarov, M.S. Wu, Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects, Phys. Rev. Lett. 98 (2007) 035501-1 - 035501-4.

DOI: https://doi.org/10.1103/physrevlett.98.035501

[13] T.J. Rupert, C.A. Schuh, Mechanically driven grain boundary relaxation: a mechanism for cyclic hardening in nanocrystalline Ni, Philos. Mag. Lett. 92 (2012) 20-28.

DOI: https://doi.org/10.1080/09500839.2011.619507

[14] A. Nazarova, R. Mulyukov, Yu. Tsarenko, V. Rubanik, A. Nazarov, Effect of ultrasonic treatment on the microstructure and properties of nanostructured nickel processed by high pressure torsion, Mater. Sci. Forum 667-669 (2011) 605-609.

DOI: https://doi.org/10.4028/www.scientific.net/msf.667-669.605

[15] A.A. Nazarov, A.A. Samigullina, R.R. Mulyukov, Yu.V. Tsarenko, V.V. Rubanik, Changes in the microstructure and mechanical properties of nanomaterials under an ultrasonic wave effect, J. Machin. Manuf. Reliab. 43 (2014) 153-159.

DOI: https://doi.org/10.3103/s1052618814020113

[16] A.A. Samigullina, A.A. Nazarov, R.R. Mulyukov, Yu.V. Tsarenko, V.V. Rubanik, Effect of ultrasonic treatment on the strength and ductility of bulk nanostructured nickel processed by equal-channel angular pressing, Rev. Adv. Mater. Sci. 39 (2014).

DOI: https://doi.org/10.4028/www.scientific.net/msf.667-669.605

[17] T. Shimokawa, Asymmetric ability of grain boundaries to generate dislocations under tensile or compressive loadings, Phys. Rev. B 82 (2010) 174122-1 - 174122-13.

DOI: https://doi.org/10.1103/physrevb.82.174122

[18] A.A. Nazarov, Molecular dynamics simulation of the relaxation of a grain boundary disclination dipole under ultrasonic stresses, Letters on Materials, 6 (2016) 179-182.

DOI: https://doi.org/10.22226/2410-3535-2016-3-179-182

[19] S.M. Foiles, M.I. Daw, M.S. Baskes, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys, Phys. Rev. B 33 (1986) 7983-7991.

DOI: https://doi.org/10.1103/physrevb.33.7983

[20] Information on http: /xmd. sourceforge. net/about. html.

[21] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.

DOI: https://doi.org/10.1088/0965-0393/18/1/015012

[22] J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phys. Chem., 91 (1987) 4950-4963.

DOI: https://doi.org/10.1021/j100303a014

[23] K.K. Shih, J.C.M. Li, Energy of grain boundaries between cusp misorientations, Surf. Sci. 50 (1975) 109-124.

DOI: https://doi.org/10.1016/0039-6028(75)90176-4

[24] V. Yu. Gertsman, A.A. Nazarov, A.E. Romanov, R. Z Valiev, V.I. Vladimorov, Disclination-structural unit model of grain boundaries, Philos. Mag. A 59 (1989) 1113-1118.

DOI: https://doi.org/10.1080/01418618908209841

[25] A.A. Nazarov, Kinetics of grain boundary recovery in deformed polycrystals, Interface Sci. 8 (2000) 315-322.

[26] A.E. Romanov, V. I. Vladimirov, Disclinations in crystalline solids, in: F.R.N. Nabarro, Ed., Dislocations in Solids, Vol. 9, Elsevier Sci. Publ., Amsterdam, 1992, pp.191-402.

[27] J. Janguiillaume, F. Chmelik, G. Kapelski, F. Bordeaux, A.A. Nazarov, G. Canova, C. Esling, R.Z. Valiev, B. Baudelet, Microstructures and hardness of ultrafine-grained Ni3Al, Acta Metall. Mater. 41 (1993) 2953-2962.

DOI: https://doi.org/10.1016/0956-7151(93)90110-e

[28] D.V. Bachurin, R.T. Murzaev, J.A. Baimova, A.A. Samigullina, K.A. Krylova. Ultrasound influence on behavior of disordered dislocation systems in a crystal with non-equilibrium grain boundaries, Letters on materials 6 (2016) 183-188.

DOI: https://doi.org/10.22226/2410-3535-2016-3-183-188