[1]
W. J. Martinez-Burgosa, E. de Souza Candeo, A. B. P. Medeiros, J. C. de Carvalho, V. O. de Andrade Tanobe, C. R. Soccol, E. B. Sydney, Hydrogen: Current advances and patented technologies of its renewable production, J. Clean. Prod., in the press, available online 6 November (2020).
DOI: 10.1016/j.jclepro.2020.124970
Google Scholar
[2]
N. Sazali, Emerging technologies by hydrogen: A review, Int J Hydrogen Energy 45 (2020) 18753-18771.
DOI: 10.1016/j.ijhydene.2020.05.021
Google Scholar
[3]
A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, A. K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energ Convers Manage 165 (2018) 602-627.
DOI: 10.1016/j.enconman.2018.03.088
Google Scholar
[4]
R. Moradi, K. M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, Int J Hydrogen Energy 44 (2019) 12254-12269.
DOI: 10.1016/j.ijhydene.2019.03.041
Google Scholar
[5]
I. P. Jain, P. Jain, A. Jain, Novel hydrogen storage materials: A review of lightweight complex hydrides, J. Alloys Compd. 503 (2010) 303-339.
DOI: 10.1016/j.jallcom.2010.04.250
Google Scholar
[6]
H. N. Abdelhamid, A review on hydrogen generation from the hydrolysis of sodium borohydride, Int J Hydrogen Energy 46 (2021) 726-765.
DOI: 10.1016/j.ijhydene.2020.09.186
Google Scholar
[7]
L. Shi, Z. Chen, Z. Jian, F. Guo, C. Gao, Carbon nanotubes-promoted CoeB catalysts for rapid hydrogen generation via NaBH4 hydrolysis, Int J Hydrogen Energy 44 (2019) 19868-19877.
DOI: 10.1016/j.ijhydene.2019.05.206
Google Scholar
[8]
D. Kılınc, O. Sahin, Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation, Int J Hydrogen Energy 44 (2019) 18858-18865.
DOI: 10.1016/j.ijhydene.2018.12.225
Google Scholar
[9]
A. F. Baye, M. W. Abebe, R. Appiah-Ntiamoah, H. Kim, Engineered iron-carbon-cobalt (Fe3O4@C-Co) core-shell composite with synergistic catalytic properties towards hydrogen generation via NaBH4 hydrolysis, J. Colloid Interface Sci. 543 (2019) 273-284.
DOI: 10.1016/j.jcis.2019.02.065
Google Scholar
[10]
J. Lee, H. Shin, K. S. Choi, J. Lee, J. Y. Choi, H. K. Yu, Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation, Int J Hydrogen Energy 44 (2019) 2943-2950.
DOI: 10.1016/j.ijhydene.2018.11.218
Google Scholar
[11]
A. Nur, A. Jumari, A.W. Budiman, A. H. Wicaksono, A. R. Nurohman, N. Nazriati, F. Fajaroh, Synthesis of nickel - Hydroxyapatite by electrochemical method, IOP Conference Series: Materials Science and Engineering 543 (2019) 012026.
DOI: 10.1088/1757-899x/543/1/012026
Google Scholar
[12]
A. Nur, A. Jumari, A.W. Budiman, N. Nazriati, F. Fajaroh, H. Fariza J. L. Anisa T., The Current Density on Electrosynthesis of Hydroxyapatite with Bipolar Membrane, MATEC Web of Conferences 156 (2018) 05015.
DOI: 10.1051/matecconf/201815605015
Google Scholar
[13]
A. Nur, A. Jumari, A.W. Budiman, O. Ruzicka, M. A. Fajri, N. Nazriati, F. Fajaroh, Electrosynthesis of cobalt - Hydroxyapatite nanoparticles, AIP Conference Proceedings 2097 (2019) 030012.
DOI: 10.1063/1.5098187
Google Scholar
[14]
A. Nur, A. W. Budiman, A. Jumari, N. Nazriati, F. Fajaroh, Electrochemical Synthesis of Hydroxyapatite Nanosheet-Assembled Porous Structures with Bipolar Membrane, Key Engineering Materials, 841 (2020), 124-131.
DOI: 10.4028/www.scientific.net/kem.841.124
Google Scholar
[15]
Y. Shang, R. Chen, G. Jiang, Kinetic study of NaBH4 hydrolysis over carbon-supported ruthenium, Int J Hydrogen Energy 33 (2008) 6719-6726.
DOI: 10.1016/j.ijhydene.2008.07.069
Google Scholar
[16]
N. Patel, R. Fernandes, A. Miotello, Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: A kinetic study, J. Power Sources 188 (2009) 411-420.
DOI: 10.1016/j.jpowsour.2008.11.121
Google Scholar
[17]
L. Yu, P. Pellechia, M.A. Matthews, Kinetic models of concentrated NaBH4 hydrolysis, Int J Hydrogen Energy 39 (2014) 442-448.
DOI: 10.1016/j.ijhydene.2013.10.105
Google Scholar
[18]
J. Lee, H. Shin, K.S. Choi, J. Lee, J.Y. Choi, H.K. Yu, Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation, Int J Hydrogen Energy 44 (2019) 2943-2950.
DOI: 10.1016/j.ijhydene.2018.11.218
Google Scholar
[19]
A.A. Cehyan, S. Edebali, E. Fangaj, A study on hydrogen generation from NaBH4 solution using Co-loaded resin catalysts, Int J Hydrogen Energy 45 (2020) 34761-34772.
DOI: 10.1016/j.ijhydene.2020.07.259
Google Scholar
[20]
L. Shi, Z. Chen, Z. Jian, F. Guo, C. Gao, Carbon nanotubes-promoted CoeB catalysts for rapid hydrogen generation via NaBH4 hydrolysis, Int J Hydrogen Energy 44 (2019) 19868-19877.
DOI: 10.1016/j.ijhydene.2019.05.206
Google Scholar
[21]
D. Kilinç, Ö. Şahin, Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation, Int J Hydrogen Energy 44 (2019) 18858-18865.
DOI: 10.1016/j.ijhydene.2018.12.225
Google Scholar
[22]
A.F. Baye, M.W. Abebe, R. Appiah-Nthiamoah, H, Kim, Engineered iron-carbon-cobalt (Fe3O4@C-Co) core-shell composite with synergistic catalytic properties towards hydrogen generation via NaBH4 hydrolysis, J. Colloid Interface Sci. 543 (2019) 273-284.
DOI: 10.1016/j.jcis.2019.02.065
Google Scholar