Synthesis of Metallic Zinc Nanoparticles by Reduction of Zinc Ions in Protonic Solvent

Article Preview

Abstract:

Simple and low environmental impact methods for producing chemically-stable nanoparticles of metallic zinc (Zn) are asked to be developed, because metallic Zn nanoparticles are easily oxidized in air, and organic solvents, which can be used for the fabrication of metallic Zn particles, give a great environmental impact. The present work focuses on the chemical reaction in protonic solvents containing aqueous solvents, of which the use will give a smaller environmental load, and proposes a method for producing metallic Zn nanoparticles by reduction of Zn ions in the protonic solvent. Two kinds of hydrophilic solvents were examined: water and ethylene glycol (EG). The use of water and EG as the solvents produced Zn oxide. Though the addition of aluminum salt to EG also produced Zn oxide, the crystallinity of Zn oxide was lower than that for with no addition of aluminum salt. In the case of the aluminum salt addition, nanoparticles with a size of 27. 5±13.3 nm were fabricated, and not only bonds of Zn-O-Zn and Zn-OH but also a bond of Zn-Zn were confirmed to be formed, which indicated the production of low crystallinity metallic Zn nanoparticles.

You might also be interested in these eBooks

Info:

Pages:

39-45

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, C. Jin, Y. Li, W. Shen, Dynamic behavior of metal nanoparticles for catalysis, Nano Today 20 (2018) 101-120.

DOI: 10.1016/j.nantod.2018.04.005

Google Scholar

[2] G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. ALOthman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review, J. King Saud Univ. Sci. 31 (2019) 257-269.

DOI: 10.1016/j.jksus.2017.06.012

Google Scholar

[3] F. Fathia, M.R. Rashidia, Y. Omidi, Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors, Talanta 192 (2019) 118-127.

DOI: 10.1016/j.talanta.2018.09.023

Google Scholar

[4] H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, S. Yang, Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions, J. Phys. Chem. B 111 (2007) 14311-14317.

DOI: 10.1021/jp0770413

Google Scholar

[5] S.M. Gawish, H. Avci, A.M. Ramadan, S. Mosleh, R. Monticello, F. Breidt, R. Kotek, Properties of antibacterial polypropylene/nanometal composite fibers, J. Biomater. Sci. Polym. Ed. 23 (2012) 43-61.

DOI: 10.1163/092050610x541944

Google Scholar

[6] K. Schaefer, A. Miszczyk, Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc, Corros. Sci.. 66 (2013) 380–391.

DOI: 10.1016/j.corsci.2012.10.004

Google Scholar

[7] S.R. Ghanta, M.H. Rao, K. Muralidharan, Single-pot synthesis of zinc nanoparticles, borane (BH3) and closo-dodecaborate (B12H12)2− using LiBH4 under mild conditions, Dalton Trans. 42 (2013) 8420-8425.

DOI: 10.1039/c3dt00092c

Google Scholar

[8] N.T. Mai, T.T. Thuy, D.M. Mott, S. Maenosono, Chemical synthesis of blue-emitting metallic zinc nanohexagons, CrystEngComm. 15 (2013) 6606-6610.

DOI: 10.1039/c3ce40801a

Google Scholar

[9] K. Schütte, H. Meyer, C. Gemel, J. Barthel, R.A. Fischer, C. Janiak, Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis, Nanoscale 6 (2014) 3116-3126.

DOI: 10.1039/c3nr05780a

Google Scholar

[10] Y. Kobayashi, H. Kakinuma, D. Nagao, Y. Ando, T. Miyazaki, M. Konno, Silica-coating of Co-Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone), J. Nanoparticle Res. 11 (2009) 1787-1794.

DOI: 10.1007/s11051-009-9617-y

Google Scholar

[11] B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method, J. Colloid Interface Sci. 311 (2007) 417-424.

DOI: 10.1016/j.jcis.2007.03.039

Google Scholar

[12] T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, R. Du, Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloids Surf. A 366 (2010) 197-202.

DOI: 10.1016/j.colsurfa.2010.06.005

Google Scholar

[13] C. Xu, G. Xu, Y. Liu, G. Wang, A simple and novel route for the preparation of ZnO nanorods, Solid State Commun. 122 (2002) 175-179.

DOI: 10.1016/s0038-1098(02)00114-x

Google Scholar

[14] D.M. Tang, G. Liu, F. Li, J. Tan, C. Liu, G. Q. Lu, H.M. Cheng, Synthesis and photoelectrochemical property of urchin-like Zn/ZnO core-shell structures, J. Phys. Chem. C 113 (2009) 11035-11040.

DOI: 10.1021/jp8107254

Google Scholar

[15] G.G. Guillén, M.I.M. Palma, B. Krishnan, D. Avellaneda, G.A. Castillo, T.K.D. Roy, S. Shaji, Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence, Mater. Chem. Phys. 162 (2015) 561–570.

DOI: 10.1016/j.matchemphys.2015.06.030

Google Scholar

[16] O. Galmiz, M. Stupavska, H. Wulff, H. Kersten, A. Brablec, M. Cernak, Deposition of Zn-containing films using atmospheric pressure plasma jet, Open Chem. 13 (2015) 198-203.

DOI: 10.1515/chem-2015-0020

Google Scholar