[1]
Y. Zhou, C. Jin, Y. Li, W. Shen, Dynamic behavior of metal nanoparticles for catalysis, Nano Today 20 (2018) 101-120.
DOI: 10.1016/j.nantod.2018.04.005
Google Scholar
[2]
G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. ALOthman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review, J. King Saud Univ. Sci. 31 (2019) 257-269.
DOI: 10.1016/j.jksus.2017.06.012
Google Scholar
[3]
F. Fathia, M.R. Rashidia, Y. Omidi, Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors, Talanta 192 (2019) 118-127.
DOI: 10.1016/j.talanta.2018.09.023
Google Scholar
[4]
H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, S. Yang, Microstructure control of Zn/ZnO core/shell nanoparticles and their temperature-dependent blue emissions, J. Phys. Chem. B 111 (2007) 14311-14317.
DOI: 10.1021/jp0770413
Google Scholar
[5]
S.M. Gawish, H. Avci, A.M. Ramadan, S. Mosleh, R. Monticello, F. Breidt, R. Kotek, Properties of antibacterial polypropylene/nanometal composite fibers, J. Biomater. Sci. Polym. Ed. 23 (2012) 43-61.
DOI: 10.1163/092050610x541944
Google Scholar
[6]
K. Schaefer, A. Miszczyk, Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc, Corros. Sci.. 66 (2013) 380–391.
DOI: 10.1016/j.corsci.2012.10.004
Google Scholar
[7]
S.R. Ghanta, M.H. Rao, K. Muralidharan, Single-pot synthesis of zinc nanoparticles, borane (BH3) and closo-dodecaborate (B12H12)2− using LiBH4 under mild conditions, Dalton Trans. 42 (2013) 8420-8425.
DOI: 10.1039/c3dt00092c
Google Scholar
[8]
N.T. Mai, T.T. Thuy, D.M. Mott, S. Maenosono, Chemical synthesis of blue-emitting metallic zinc nanohexagons, CrystEngComm. 15 (2013) 6606-6610.
DOI: 10.1039/c3ce40801a
Google Scholar
[9]
K. Schütte, H. Meyer, C. Gemel, J. Barthel, R.A. Fischer, C. Janiak, Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis, Nanoscale 6 (2014) 3116-3126.
DOI: 10.1039/c3nr05780a
Google Scholar
[10]
Y. Kobayashi, H. Kakinuma, D. Nagao, Y. Ando, T. Miyazaki, M. Konno, Silica-coating of Co-Pt alloy nanoparticles prepared in the presence of poly(vinylpyrrolidone), J. Nanoparticle Res. 11 (2009) 1787-1794.
DOI: 10.1007/s11051-009-9617-y
Google Scholar
[11]
B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method, J. Colloid Interface Sci. 311 (2007) 417-424.
DOI: 10.1016/j.jcis.2007.03.039
Google Scholar
[12]
T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, R. Du, Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloids Surf. A 366 (2010) 197-202.
DOI: 10.1016/j.colsurfa.2010.06.005
Google Scholar
[13]
C. Xu, G. Xu, Y. Liu, G. Wang, A simple and novel route for the preparation of ZnO nanorods, Solid State Commun. 122 (2002) 175-179.
DOI: 10.1016/s0038-1098(02)00114-x
Google Scholar
[14]
D.M. Tang, G. Liu, F. Li, J. Tan, C. Liu, G. Q. Lu, H.M. Cheng, Synthesis and photoelectrochemical property of urchin-like Zn/ZnO core-shell structures, J. Phys. Chem. C 113 (2009) 11035-11040.
DOI: 10.1021/jp8107254
Google Scholar
[15]
G.G. Guillén, M.I.M. Palma, B. Krishnan, D. Avellaneda, G.A. Castillo, T.K.D. Roy, S. Shaji, Structure and morphologies of ZnO nanoparticles synthesized by pulsed laser ablation in liquid: Effects of temperature and energy fluence, Mater. Chem. Phys. 162 (2015) 561–570.
DOI: 10.1016/j.matchemphys.2015.06.030
Google Scholar
[16]
O. Galmiz, M. Stupavska, H. Wulff, H. Kersten, A. Brablec, M. Cernak, Deposition of Zn-containing films using atmospheric pressure plasma jet, Open Chem. 13 (2015) 198-203.
DOI: 10.1515/chem-2015-0020
Google Scholar