[1]
F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Design of novel high strength bainitic steels: Part 1. Mater Sci Technol 17(2001) 512-516. http://dx.doi.org/10.1179/026708301101510348.
DOI: 10.1179/026708301101510348
Google Scholar
[2]
F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Design of novel high strength bainitic steels: Part 2. Mater Sci Technol 17(2001) 517-522. http://dx.doi.org/10.1179/026708301101510357.
DOI: 10.1179/026708301101510357
Google Scholar
[3]
C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Development of hard bainite ISIJ Int 43(2003) 1238-1243. http://dx.doi.org/10.2355/isijinternational.43.1238.
DOI: 10.2355/isijinternational.43.1238
Google Scholar
[4]
F.G. Caballero, H.K.D.H. Bhadeshia, Very strong bainite. Curr Opinion Solid State Mater Sci 8(2004) 251-257. http://dx.doi.org/10.1016/j.cossms.2004.09.005.
DOI: 10.1016/j.cossms.2004.09.005
Google Scholar
[5]
H.K.D.H. Bhadeshia, Hard bainite. Proceedings of the Solid→Solid Phase Transformations in Inorganic Materials, Arizona, USA, May and June 2005. 2005. p.469–484.
Google Scholar
[6]
H.K.D.H. Bhadeshia, P. Brown, C. Garcia-Mateo, Bainite steel and methods of manufacture thereof. Patent number GB2462197;(2010).
Google Scholar
[7]
H.K.D.H. Bhadeshia, The first bulk nanostructured metal. Sci Technol Adv Mater 14(2013) 014202. http://dx.doi.org/10.1088/1468-6996/14/1/014202.
DOI: 10.1088/1468-6996/14/1/014202
Google Scholar
[8]
H.K.D.H. Bhadeshia, High performance bainitic steels. Mater Sci Forum 500-501(2005) 63-74. http://dx.doi.org/10.4028/www.scientific.net/MSF.500-501.63.
DOI: 10.4028/www.scientific.net/msf.500-501.63
Google Scholar
[9]
M.R. Zhang, H.C. Gu, Fracture toughness of nanostructured railway wheels. Eng Fract Mech 75(2008) 5113–5121. http://dx.doi.org/10.1016/j.engfracmech.2008.07.007.
DOI: 10.1016/j.engfracmech.2008.07.007
Google Scholar
[10]
S.B. Singh, H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels. Mater Sci Eng A 245(1998) 72-79. http://dx.doi.org/10.1016/S0921-5093(97)00701-6.
DOI: 10.1016/s0921-5093(97)00701-6
Google Scholar
[11]
C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Acceleration of Low–temperature bainite. ISIJ Int 43(2003) 1821-1825. http://dx.doi.org/10.2355/isijinternational.43.1821.
DOI: 10.2355/isijinternational.43.1821
Google Scholar
[12]
D. Baran, A. Królicka, Evaluation of the Possibility to Obtain Nanostructured Bainite in High-Carbon and High-Silicon 9XC Bearing Steel. J Mater Eng Perform 29 (2020) 5329-5336. https://doi.org/10.1007/s11665-020-05038-8.
DOI: 10.1007/s11665-020-05038-8
Google Scholar
[13]
H. Huang, M.Y. Sherif, P.E.J. Rivera-Díaz-del-Castillo, Combinatorial optimization of carbide-free bainitic nanostructures. Acta Mater 61(2013) 1639-1647. http://dx.doi.org/10.1016/j.actamat.2012.11.040.
DOI: 10.1016/j.actamat.2012.11.040
Google Scholar
[14]
S. Baradari, S.M.A. Boutorabi, Effects of isothermal transformation conditions on the microstructure and hardness values of a high-carbon Al–Si alloyed steel. Mater Des 86 (2015) 603-608. http://dx.doi.org/10.1016/j.matdes.2015.07.151.
DOI: 10.1016/j.matdes.2015.07.151
Google Scholar
[15]
W. Gong, Y. Tomota, M.S. Kooc, Y. Adachi, Effect of ausforming on nanobainite steel. Scripta Mater 63(2010) 819-822. http://dx.doi.org/10.1016/j.scriptamat.2010.06.024.
DOI: 10.1016/j.scriptamat.2010.06.024
Google Scholar
[16]
J. Yang, H. Qiu, P. Xu, H. Yu, Y. Wang, The substitution of aluminum for cobalt in nanostructured bainitic steels. AIP Conference Proceedings 1971 (2018) 020001. https://doi.org/10.1063/1.5041096.
DOI: 10.1063/1.5041096
Google Scholar
[17]
A. Kumar, K. Singh, A. Singh, Compositional design of high strength nanostructured bainite. Mater. Res. Express 6 (2019) 026526. https://doi.org/10.1088/2053-1591/aaec9e.
DOI: 10.1088/2053-1591/aaec9e
Google Scholar
[18]
B. Avishan, S. Golchin, S. Yazdani, Elongation improvement in nano bainite steel obtained from plastically deformed primary austenite. Philos Mag 100 (2020) 2244-2261. https://doi.org/10.1080/14786435.2020.1764654.
DOI: 10.1080/14786435.2020.1764654
Google Scholar
[19]
S. Golchin, B. Avishan, S. Yazdani, Effect of 10% ausforming on impact toughness of nano bainite austempered at 300°C. Mater Sci Eng A 513-514(2016) 94-101. https://doi.org/10.1016/j.msea.2016.01.025.
DOI: 10.1016/j.msea.2016.01.025
Google Scholar
[20]
F.C. Zhang, T.S. Wang, P. Zhang, C.L. Zheng, B. Lv, M. Zhang, Y. Z. Zheng, A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel. Scr Mater 59 (2008) 294-296. https://doi.org/10.1016/j.scriptamat.2008.03.024.
DOI: 10.1016/j.scriptamat.2008.03.024
Google Scholar
[21]
P. Zhang, F.C. Zhang, Z.G. Yan, T.S. Wang, L.H. Qian, Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel. Wear 271 (2011) 697-704. https://doi.org/10.1016/j.wear.2010.12.025.
DOI: 10.1016/j.wear.2010.12.025
Google Scholar
[22]
X.F.Yu, Y.H. Wei, D.Y. Zheng, X.Y. Shen, Y.Su, Y.Z. Xia, Y.B. Liu, Effect of nano-bainite microstructure and residual stress on friction properties of M50 bearing steel. Tribol. Int. 165 (2022) 107285. https://doi.org/10.1016/j.triboint.2021.107285.
DOI: 10.1016/j.triboint.2021.107285
Google Scholar
[23]
D. Baran, A. Królicka, Evaluation of the possibility to obtain nanostructured bainite in high-carbon and high-silicon 9XC bearing steel. J. Mater. Eng. Perform 29 (2020)5329–5336. https://doi.org/10.1007/s11665-020-05038-8.
DOI: 10.1007/s11665-020-05038-8
Google Scholar
[24]
P. Valizadeh Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen, B. Prakash, The role of retained austenite in dry rolling/sliding wear of nanostructured carbide-free bainitic steels. Wear 428-429 (2019) 193-204. https://doi.org/10.1016/j.wear.2020.203484.
DOI: 10.1016/j.wear.2019.03.012
Google Scholar
[25]
H.K.D.H. Bhadeshia, Bainite in steels. 2nd ed. London: IOM Communications Ltd; 2001. ISBN: 1-86125-112-2.
Google Scholar
[26]
Materials Algorithms Project (MAP), Department of Materials Science and Metallurgy, University of Cambridge, UK, 2015. Retrieved fromhttp://www.msm.cam.ac.uk/ map/(accessed: February 2, 2015).
Google Scholar
[27]
H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(1969) 65-71. http://dx.doi.org/10.1107/S0021889869006558.
Google Scholar
[28]
L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Shultz, J.W. Richardson, Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81(1997) 594-600. http://dx.doi.org/10.1063/1.364220.
DOI: 10.1063/1.364220
Google Scholar
[29]
D.J. Dyson, B. Holmes, Effect of alloying additions on the lattice parameter of austenite. J Iron Steel Inst 208 (1970) 469-474.
Google Scholar
[30]
G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold- worked metals from measurements on the x-ray Debye-Sherrer spectrum. Philos Mag 1(1956) 34-46. http://dx.doi.org/10.1080/14786435608238074.
DOI: 10.1080/14786435608238074
Google Scholar
[31]
DIN 50125, Prüfung Metallischer Werkstoffe - Zugproben; 77.040.10, 12/(2016).
DOI: 10.31030/2577390
Google Scholar
[32]
G. Krauss, Principles of heat treatment of steels. Metal Park, Ohio: American Society for Metals;1980. ISBN: 0-87170-100-6.
Google Scholar
[33]
H.K.D.H. Bhadeshia, Phase transformations contributing to the properties of modern steels. Bull Pol Acad Sci, Tech Sci 58(2010) 255-265.
Google Scholar
[34]
S.A. Khan, H.K.D.H. Bhadeshia, The bainite transformation in chemically heterogeneous 300M high-strength steel. Metall Trans A 21(1990) 859-875. http://dx.doi.org/10.1007/BF02656570.
DOI: 10.1007/bf02656570
Google Scholar
[35]
M. Kang, M. Zhu, M. Zhang, Mechanism of bainite nucleation in steel, iron and copper alloys. J Mater Sci Techol 21(2005) 437-444.
Google Scholar
[36]
S.K. Putatunda, Influence of austempering temperature on microstructure and fracture toughness of a high-carbon, high-silicon and high-manganese cast steel. Mater Des 24(2003) 435-443. http://dx.doi.org/10.1016/S0261-3069(03)00090-6.
DOI: 10.1016/s0261-3069(03)00090-6
Google Scholar
[37]
S.K. Putatunda, A.V. Singar, R. Tackett, G. Lawes, Development of a high strength high toughness ausferritic steel. Mater Sci Eng A 513-514(2009) 329-339. http://dx.doi.org/10.1016/j.msea.2009.02.013.
DOI: 10.1016/j.msea.2009.02.013
Google Scholar
[38]
A.R. Kilmametov, G. Vaughanb, A.R. Yavari, A. LeMoulec, W.J. Botta, R.Z. Valiev, Microstructure evolution in copper under severe plastic deformation detected by in situ X-ray diffraction using monochromatic synchrotron light, Mater Sci Eng A 503(2009) 10-13. https://doi.org/10.1016/j.msea.2008.11.023.
DOI: 10.1016/j.msea.2008.11.023
Google Scholar
[39]
H.K.D.H. Bhadeshia, Anomalies in carbon concentration determinations from nanostructured bainite. Mater Sci Technol 31(2015) 758-763. http://dx.doi.org/10.1179/1743284714Y.0000000655.
DOI: 10.1179/1743284714y.0000000655
Google Scholar
[40]
F.G. Caballero, M.K. Miller, S.S. Babu, C. Garcia-Mateo, Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater 55(2007) 381-390. http://dx.doi.org/10.1016/j.actamat.2006.08.033.
DOI: 10.1016/j.actamat.2006.08.033
Google Scholar
[41]
H.K.D.H. Bhadeshia, J.W. Christian, Bainite in steels. Metall Trans A 21(1990) 767-797. http://dx.doi.org/10.1007/BF02656561.
Google Scholar
[42]
R.F. Hehemann, K.R. Kinsman, H.I. Aaronson, A debate on the bainite reaction. Metall Trans B 3(1972)1077-1094. http://dx.doi.org/10.1007/BF02642439.
DOI: 10.1007/bf02642439
Google Scholar
[43]
H.K.D.H. Bhadeshia, D.V. Edmonds, The bainite transformation in a silicon steel. Metall Trans A 10(1979) 895-907. http://dx.doi.org/10.1007/BF02658309.
DOI: 10.1007/bf02658309
Google Scholar
[44]
A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, R. Elvira, Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions. Wear 298-299(2013) 42-47. http://dx.doi.org/10.1016/j.wear.2012.11.064.
DOI: 10.1016/j.wear.2012.11.064
Google Scholar
[45]
H. Amel-Farzad, H.R. Faridi, F. Rajabpour, A. Abolhasani, S.h. Kazemi, Y. Khaledzadeh, Developing very hard nanostructured bainitic steel. Mater Sci Eng A 559(2013):68-73. http://dx.doi.org/10.1016/j.msea.2012.08.020.
DOI: 10.1016/j.msea.2012.08.020
Google Scholar
[46]
C. Garcia-Mateo, F.G. Caballero, Ultra-high-strength bainitic steels. ISIJ Int 45(2005) 1736-1740. http://dx.doi.org/10.2355/isijinternational.45.1736.
DOI: 10.2355/isijinternational.45.1736
Google Scholar
[47]
H.K.D.H. Bhadeshia, Properties of fine-grained steels generated by displacive transformation. Mater Sci Eng A 481-482(2008) 36-39. http://dx.doi.org/10.1016/j.msea.2006.11.181.
DOI: 10.1016/j.msea.2006.11.181
Google Scholar
[48]
C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, R. Elvira, Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon. Mater Sci Eng A 549(2012) 185-192. http://dx.doi.org/10.1016/j.msea.2012.04.031.
DOI: 10.1016/j.msea.2012.04.031
Google Scholar
[49]
Y. Tomota, K. Kuroki, T. Mori, I. Tamura, Tensile deformation of two-ductile-phase alloys: flow curves of α→γ Fe-Cr-Ni alloys. Mater Sci Eng 24(1976) 85-94. http://dx.doi.org/10.1016/0025-5416(76)90097-5.
DOI: 10.1016/0025-5416(76)90097-5
Google Scholar
[50]
H.K.D.H. Bhadeshia, D.V. Edmonds, Analysis of the mechanical properties and microstructure of a high-silicon dual-phase steels. Met Sci 14(1980) 41-49. http://dx.doi.org/10.1179/030634580790426328.
DOI: 10.1179/030634580790426328
Google Scholar
[51]
H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, R.W. Reed, Stress-induced transformation to bainite in a Fe-Cr-Mo-C pressure vessel steel. Mater Sci Technol 7(1991) 686-698. http://dx.doi.org/10.1179/mst.1991.7.8.686.
DOI: 10.1179/mst.1991.7.8.686
Google Scholar
[52]
A. Barbacki, The role of bainite in shaping mechanical properties of steels. J Mater Process Tech 53(1995):57-63. http://dx.doi.org/10.1016/0924-0136(95)01961-D.
DOI: 10.1016/0924-0136(95)01961-d
Google Scholar
[53]
G.E. Dieter, Mechanical metallurgy. 3rd ed. New York: McGraw-Hill; 1986. ISBN: 0-07016-893-8.
Google Scholar
[54]
M. Aliofkhazraei, editor. Handbook of Mechanical Nanostructuring. Weinheim:Wiley;2015. ISBN: 978-3-527-33506-0.
Google Scholar
[55]
Caballero F.G., M.J. Santofimia, C. Garcia-Mateo, J. Chao, C. Garcia de Andres, Theoretical design and advanced microstructure in super high strength steels. Mater Des 30(2009) 2077-2083. http://dx.doi.org/10.1016/j.matdes.2008.08.042.
DOI: 10.1016/j.matdes.2008.08.042
Google Scholar
[56]
H.K.D.H. Bhadeshia, Models for the elementary mechanical properties of steel welds. In: Cerjak H, Bhadeshia HKDH, editors. The proceeding of mathematical modelling of weld phenomena III. London: Institute of Materials; 1997. pp.229-284.
Google Scholar
[57]
C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Mechanical properties of low-temperature bainite. Mater Sci Forum 500-501(2005) 495-502. http://dx.doi.org/10.4028/www.scientific.net/MSF.500-501.495.
DOI: 10.4028/www.scientific.net/msf.500-501.495
Google Scholar
[58]
H.K.D.H. Bhadeshia, The lower bainite transformation and the significance of carbide precipitation. Acta Metall 28(19808) 1103-1114. http://dx.doi.org/10.1016/0001-6160(80)90093-0.
DOI: 10.1016/0001-6160(80)90093-0
Google Scholar
[59]
H.K.D.H. Bhadeshia, Rationalisation of Shear Transformations in Steels. Acta Metall 29(1981) 1117-1130. http://dx.doi.org/10.1016/0001-6160(81)90063-8.
DOI: 10.1016/0001-6160(81)90063-8
Google Scholar
[60]
H.K.D.H. Bhadeshia, A.R. Waugh, Bainite: an atom-probe study of the incomplete reaction phenomenon. Acta Metall 30(1982) 775-784. http://dx.doi.org/10.1016/0001-6160(82)90075-X.
DOI: 10.1016/0001-6160(82)90075-x
Google Scholar
[61]
J. Wilde, A. Cerezo, G.D.W. Smith, Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron. Scripta Mater 43(2000) 39-48. http://dx.doi.org/10.1016/S1359-6462(00)00361-4.
DOI: 10.1016/s1359-6462(00)00361-4
Google Scholar
[62]
D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, M.K. Miller Characterization of the carbon and retained austenite distributions in martensitic medium carbon, high silicon steel. Metall Mater Trans A 38(2007) 1698-1711. http://dx.doi.org/10.1007/s11661-007-9160-3.
DOI: 10.1007/s11661-007-9160-3
Google Scholar
[63]
A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment. Acta Mater 56(2008) 16–22. http://dx.doi.org/10.1016/j.actamat.2007.08.051.
DOI: 10.1016/j.actamat.2007.08.051
Google Scholar
[64]
F.G. Caballero, H.W. Yen, M.K. Miller, J.R. Yang, J. Cornide, C. Garcia-Mateo, Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater 59(2013):6117-6123. http://dx.doi.org/10.1016/j.actamat.2011.06.024.
DOI: 10.1016/j.actamat.2011.06.024
Google Scholar
[65]
F.G. Caballero, M.K. Miller, C. Garcia-Mateo, Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Mater 58(2010) 2338-2343. http://dx.doi.org/10.1016/j.actamat.2009.12.020.
DOI: 10.1016/j.actamat.2009.12.020
Google Scholar
[66]
F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, New experimental evidence of the diffusionless transformation nature of bainite. J Alloys Comp Supplement 59(2013) S626-S630. http://dx.doi.org/10.1016/j.jallcom.2012.02.130.
DOI: 10.1016/j.jallcom.2012.02.130
Google Scholar
[67]
F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, M.J. Santofimia, Temperature dependence of carbon supersaturation of ferrite in bainitic steels. Scripta Mater 67(2012) 846-849. http://dx.doi.org/10.1016/j.scriptamat.2012.08.007.
DOI: 10.1016/j.scriptamat.2012.08.007
Google Scholar
[68]
J.B. Seol, D. Raabe, P.P. Choi, Y.R. Im, C.G. Park, Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels. Acta Mater 60(2012) 6183-6199. http://dx.doi.org/10.1016/j.actamat.2012.07.064.
DOI: 10.1016/j.actamat.2012.07.064
Google Scholar
[69]
K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong, A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater Sci Eng A 528(2011) 8486-8491. http://dx.doi.org/10.1016/j.msea.2011.07.049.
DOI: 10.1016/j.msea.2011.07.049
Google Scholar
[70]
Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, A new effect of retained austenite on ductility enhancement in high strength bainitic steel. Mater Sci Eng A 552(2012):288-294. http://dx.doi.org/10.1016/j.msea.2012.05.042.
DOI: 10.1016/j.msea.2012.05.042
Google Scholar
[71]
S. Chatterjee, H.K.D.H. Bhadeshia, TRIP-assisted steels: cracking of high-carbon martensite. Mater Sci Technol 22(2006) 645-649. http://dx.doi.org/10.1179/174328406X86182.
DOI: 10.1179/174328406x86182
Google Scholar
[72]
B. Avishan, S. Yazdani, S. Hossein Nedjad, Toughness variations in nanostructured bainitic steels. Mater Sci Eng A 548(2012) 106-111. http://dx.doi.org/10.1016/j.msea.2012.03.098.
DOI: 10.1016/j.msea.2012.03.098
Google Scholar
[73]
J. Yang, T.S. Wang, B. Zhang, F.C. Zhang, High-cycle bending fatigue behaviour of nanostructured bainitic steel. Scripta Mater 66(2012) 363-366. http://dx.doi.org/10.1016/j.scriptamat.2011.11.033.
DOI: 10.1016/j.scriptamat.2011.11.033
Google Scholar