Characterisation of Functionalised Multi-Wall Carbon Nanotube Nanocomposites with Poly(3,4-Ethylene Dioxythiophene): Polystyrene Sulfonate

Article Preview

Abstract:

The influence of functionalised multi-wall carbon nanotubes (f-MWCNTs) on the conductivity of conducting polymer poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) (PEDOT:PSS) was explored by using various concentrations of MWCNTs to create a nanocomposite (MWCNT/PEDOT:PSS) matrix. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction and Fourier transform infrared spectroscopy were employed to examine the structural and morphological features of the produced nanocomposite thin films. The electrical conductivity of f-MWCNT and (PEDOT:PSS/MWCNT) nanocomposites was determined using a two-point probe (lab view 2018). Results showed that the conductivity was enhanced from 6.7 s/cm for PEDOT:PSS (0.01 wt.%) f-MWCNT to 36.6 s/cm for PEDOT:PSS (5 wt.%) f-MWCNT and then decreased to 11.72 and 3.14 s/cm for 7 and 10 wt.%, respectively.

You might also be interested in these eBooks

Info:

Pages:

45-62

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Diani, K. Gall, Finite Strain 3D Thermoviscoelastic Constitutive Model, Society. (2006) 1–10. https://doi.org/10.1002/pen.

Google Scholar

[2] T.A. Skotheim, R.L. Elsenbaumer, and J.R. Reynolds, No Title, Handbook of Conducting Polymers,. (1998). https://doi.org/New York ; Basel : M. Dekker, (1998).

Google Scholar

[3] N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng, Y.R. Jo, B.J. Kim, K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization, Advanced Materials. 26 (2014) 2268–2272. https://doi.org/10.1002/adma.201304611.

DOI: 10.1002/adma.201304611

Google Scholar

[4] Y. Xia, K. Sun, J. Ouyang, Highly conductive poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells, Energy and Environmental Science. 5 (2012) 5325–5332. https://doi.org/10.1039/c1ee02475b.

DOI: 10.1039/c1ee02475b

Google Scholar

[5] P.C. Mahakul, K. Sa, B. Das, B.V.R.S. Subramaniam, S. Saha, B. Moharana, J. Raiguru, S. Dash, J. Mukherjee, P. Mahanandia, Preparation and characterization of PEDOT: PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications, Journal of Materials Science. 52 (2017) 5696–5707. https://doi.org/10.1007/s10853-017-0806-2.

DOI: 10.1007/s10853-017-0806-2

Google Scholar

[6] W. Jonas, F. and Krafft, No Title, EP 440957 (Bayer AG). Prior: 20 (1990).

Google Scholar

[7] K.R. Andreas Elschner, Stephan Kirchmeyer, Wilfried Lovenich, Udo Merker, PEDOT Principles and Applications of an Intrinsically Conductive Polymer, 1st Editio, November 8, 2010 by CRC Press, 2010. https://doi.org/https://doi.org/10.1201/b10318.

DOI: 10.1201/b10318

Google Scholar

[8] N. Kim, I. Petsagkourakis, S. Chen, M. Berggren, X. Crispin, M.P. Jonsson, I. Zozoulenko, Electric Transport Properties in PEDOT Thin Films, 2019. https://doi.org/10.1201/9780429190520-3.

DOI: 10.1201/9780429190520-3

Google Scholar

[9] M. Bansal, R. Srivastava, C. Lal, M.N. Kamalasanan, L.S. Tanwar, Morphological, optical and electrical characterization of solution processed mwntpedot:PSS nanocomposite, International Journal of Modern Physics B. 25 (2011) 2543–2556. https://doi.org/10.1142/S0217979211101843.

DOI: 10.1142/s0217979211101843

Google Scholar

[10] S.K. Soni, B. Thomas, V.R. Kar, A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications, Materials Today Communications. 25 (2020) 101546. https://doi.org/10.1016/j.mtcomm.2020.101546.

DOI: 10.1016/j.mtcomm.2020.101546

Google Scholar

[11] M. Bodik, M. Kovacova, S. Banovska, Z. Spitalsky, V. Held, M. Jergel, E. Majkova, P. Si, Uniaxial strengthening of the polyamide fi lm by the aligned carbon nanotubes, 25 (2020). https://doi.org/10.1016/j.mtcomm.2020.101432.

DOI: 10.1016/j.mtcomm.2020.101432

Google Scholar

[12] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature. 381 (1996) 678–680. https://doi.org/10.1038/381678a0.

DOI: 10.1038/381678a0

Google Scholar

[13] B. De Vivo, P. Lamberti, G. Spinelli, V. Tucci, Numerical investigation on the influence factors of the electrical properties of carbon nanotubes-filled composites, Journal of Applied Physics. 113 (2013). https://doi.org/10.1063/1.4811523.

DOI: 10.1063/1.4811523

Google Scholar

[14] J.K.W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. Van Es, J. Lohmar, W.J. Blau, K. Schulte, A.H. Windle, M.S.P. Shaffer, A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres, Polymer. 45 (2004) 2001–2015. https://doi.org/10.1016/j.polymer. 2004.01.023.

DOI: 10.1016/j.polymer.2004.01.023

Google Scholar

[15] O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, A. Bouhamed, Flexible carbon nanotube films for high performance strain sensors, 2014. https://doi.org/10.3390/s140610042.

DOI: 10.3390/s140610042

Google Scholar

[16] K. ning Han, W. Zhou, R. Qin, G. fei Wang, L.H. Ma, Effects of carbon nanotubes on open-hole carbon fiber reinforced polymer composites, Materials Today Communications. 24 (2020) 101106. https://doi.org/10.1016/j.mtcomm.2020.101106.

DOI: 10.1016/j.mtcomm.2020.101106

Google Scholar

[17] J. Ma, X. Nan, J. Liu, W. Zhu, W. Qin, Dispersion of pristine and polyaniline functionalized carbon nanotubes in designed solvent mixtures by Hansen solubility parameters, Materials Today Communications. 14 (2018) 99–105. https://doi.org/10.1016/j.mtcomm.2017.12.017.

DOI: 10.1016/j.mtcomm.2017.12.017

Google Scholar

[18] K.M. Ziadan, Preparation and Characterization of Nanocompocite Conducting Polymers ( PANI-DBSA / MWNCT ), 8 (2016) 35–43.

Google Scholar

[19] N. Kumar, L. Bharadwaj, A. Sharma, D. Singh, Studies of glucose oxidase immobilized carbon nanotube-polyaniline composites, (2009). http://tudr.thapar.edu:8080/jspui/handle/10266/855.

Google Scholar

[20] M.F. Fatin, A.R. Ruslinda, M.K. Arshad, U. Hashim, S. Norhafizah, M.A. Farehanim, Surface Functionalization of Multiwalled Carbon Nanotube for Biosensor Device Application, (2014) 377–379. 10.1109/smelec.2014.6920876.

DOI: 10.1109/smelec.2014.6920876

Google Scholar

[21] H. Wang, Z.H. Zhang, Z.Y. Hu, Q. Song, S.P. Yin, Z. Kang, S.L. Li, Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes, Materials Science and Engineering A. 715 (2018) 163–173. https://doi.org/10.1016/j.msea.2018.01.005.

DOI: 10.1016/j.msea.2018.01.005

Google Scholar

[22] A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, A.M. Mechanical, Mechanical properties of multi-walled carbon nanotube / epoxy composites To cite this version : HAL Id : hal-02456622, (2020). 10.1016/j.matdes.2010.04.018.

DOI: 10.1016/j.matdes.2010.04.018

Google Scholar

[23] Z. Zhang, G. Chen, H. Wang, X. Li, Template-directed in situ polymerization preparation of nanocomposites of PEDOT:PSS-coated multi-walled carbon nanotubes with enhanced thermoelectric property, Chemistry - An Asian Journal. 10 (2015) 149–153. https://doi.org/10.1002/asia.201403100.

DOI: 10.1002/asia.201403100

Google Scholar

[24] Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite, Sensors and Actuators, B: Chemical. 178 (2013) 485–493. https://doi.org/10.1016/j.snb.2013.01.014.

DOI: 10.1016/j.snb.2013.01.014

Google Scholar

[25] H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong, J.H. Kim, Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process, Journal of Materials Chemistry A. 2 (2014) 6532–6539. https://doi.org/10.1039/c3ta14960a.

DOI: 10.1039/c3ta14960a

Google Scholar

[26] Z. Zhu, C. Liu, H. Shi, Q. Jiang, J. Xu, F. Jiang, J. Xiong, E. Liu, An effective approach to enhanced thermoelectric properties of PEDOT:PSS films by a des post-treatment, Journal of Polymer Science, Part B: Polymer Physics. 53 (2015) 885–892. https://doi.org/10.1002/polb.23718.

DOI: 10.1002/polb.23718

Google Scholar

[27] N.B. Mkhondo, T. Magadzu, Effects of different acid-treatment on the nanostructure and performance of carbon nanotubes in electrochemical hydrogen storage, Digest Journal of Nanomaterials and Biostructures. 9 (2014) 1331–1338.

Google Scholar

[28] J. Mannayil, S. Methattel Raman, J. Sankaran, R. Raman, J. Madambi Kunjukutan Ezhuthachan, Solution Processable PEDOT:PSS/Multiwalled Carbon Nanotube Composite Films for Flexible Electrode Applications, Physica Status Solidi (A) Applications and Materials Science. 215 (2018) 1–10. https://doi.org/10.1002/pssa.201701003.

DOI: 10.1002/pssa.201701003

Google Scholar

[29] A. Chowdhry, J. Kaur, M. Khatri, V. Puri, R. Tuli, S. Puri, Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo., Heliyon. 5 (2019) e02605. https://doi.org/10.1016/j.heliyon.2019.e02605.

DOI: 10.1016/j.heliyon.2019.e02605

Google Scholar

[30] B.Y. Kadem, M. Al-Hashimi, A.S. Hasan, R.G. Kadhim, Y. Rahaq, A.K. Hassan, The effects of the PEDOT:PSS acidity on the performance and stability of P3HT:PCBM-based OSCs, Journal of Materials Science: Materials. 10.1007/s10854-018-0055-4.

DOI: 10.1007/s10854-018-0055-4

Google Scholar

[31] R. Hegde, K. Ramji, S. Peravali, Y. Shiralgi, G. Hegde, L. Bathini, Characterization of MWCNT-PEDOT: PSS Nanocomposite Flexible Thin Film for Piezoresistive Strain Sensing Application, (2019). https://doi.org/10.1155/2019/9320976.

DOI: 10.1155/2019/9320976

Google Scholar

[32] L.H.D. Skjolding, C. Spegel, A. Ribayrol, J. Emnéus, L. Montelius, Characterisation of nano-interdigitated electrodes, Journal of Physics: Conference Series. 100 (2008) 3–7. https://doi.org/10.1088/1742-6596/100/5/052045.

DOI: 10.1088/1742-6596/100/5/052045

Google Scholar

[33] M.Z. Rajab, K.M. Ziadan, The Morphology and Electrical Characterization for external doping (POT), in: IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, 2020. https://doi.org/10.1088/1757-899X/928/7/072038.

DOI: 10.1088/1757-899x/928/7/072038

Google Scholar

[34] M.Z. Rajab, K.M. Ziadan, The Effect of the Solvents on Electrical properties of POT conducting Polymer, Mechanics of Advanced Composite Structures, Semnan University Press 8, (2021) 283-289, https:// doi.org/ 10.22075/MACS.2021.21274.1302.

Google Scholar

[35] M.G. Olayo, G.J. Cruz, S. López, J. Morales, R. Olayo, Conductivity and activation energy in polymers synthesized by plasmas of thiophene, Journal of the Mexican Chemical Society. 54 (2010) 18–23. https://doi.org/10.29356/jmcs.v54i1.960.

DOI: 10.29356/jmcs.v54i1.960

Google Scholar

[36] M. Mahdi, A. Abdul-Hameed, B. Ali, H.F Al-Taay, Fabrication of SiNWs/PEDOT:PSS Heterojunction Solar Cells, IJMSE, 17(2020)69-76,http://dx.doi.org/10.22068/ijmse.17.1.69.

Google Scholar