Iron Oxide Nanoparticles Preparation by Using Homemade Hydrothermal Pyrolysis Technique with Different Reaction Times

Article Preview

Abstract:

In this research, iron oxide nanoparticles were prepared by a new hydrothermal pyrolysis technique at different reaction times. X-ray diffractometer (XRD) characterization showed that the nanoparticles have high crystallinity with a combination of two crystal phases maghemite and magnetite, as the reaction time increase the ratio of magnetite phase to maghemite phase increased. The morphological properties of the samples showed an increase in the particle size from 58 to 108 nm due to the single domain–multidomain transition as showed by scanning electron microscope (SEM). Electron Dispersive X-ray (EDX) spectra showed only peaks of oxygen and iron that verified the formation of iron oxide nanoparticles. The Fourier transform infrared spectroscopy (FT-IR) showed that the absorption peaks at about 578 cm-1 and 630 cm-1 correspond to the stretching modes of the Fe-O in magnetite, as the reaction time increased the peak around 630 cm-1 decreased due to the magnetite phase only. Finally, all the results showed the formation of iron oxide nanoparticles by this new technique that merges spray pyrolysis and hydrothermal techniques with many advantages such as spraying successive parameters in a short time, high-speed, good homogeneity, and pure material with small particle size.

You might also be interested in these eBooks

Info:

Pages:

1-10

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Bagas, K. Thiya, B. D. N. Asep, Economic Perspective in the Production of Magnetite (Fe3O4) Nanoparticles by Co-Precipitation Method, Chem. Eng. J. 2, 2 (2018) 1– 4.

Google Scholar

[2] P. Praserthdam, P. L. Silveston, O. Mekasuwandumrong, V. Pavarajarn, J. Phungphadung, P. Somrang, A new correlation for the effects of the crystallite size and calcination temperature on the single metal oxides and spinel oxides nanocrystal, Cryst. Growth Des. 4,1 (2004) 39-43. ‏.

DOI: 10.1021/cg030001d

Google Scholar

[3] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, E. L. Vander, R. N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 ,6 (2008) 2064-2110. ‏.

DOI: 10.1021/cr068445e

Google Scholar

[4] A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress in crystal growth and characterization of materials, 55,1-2 (2009) 22-45. ‏.

DOI: 10.1016/j.pcrysgrow.2008.08.003

Google Scholar

[5] S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, R. Massart, Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils, J. Mate. Rese. 13,10(1998) 2975-2981. ‏.

DOI: 10.1557/jmr.1998.0407

Google Scholar

[6] E. Baladi, F. Davar, A. Hojjati-Najafabadi, Synthesis and characterization of g–C3N4–CoFe2O4–ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic, Environ. Res. 215,2 (2022) 114270. ‏.

DOI: 10.1016/j.envres.2022.114270

Google Scholar

[7] B. K. Ozcelik, C. Ergun, Synthesis and characterization of iron oxide particles using spray pyrolysis technique, Cera. Inter. 4,12 (2015) 1994-2005. ‏.

DOI: 10.1016/j.ceramint.2014.09.103

Google Scholar

[8] J. An, K. Park, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. mate. 3,12 (2004) 891-895.

DOI: 10.1038/nmat1251

Google Scholar

[9] A. H. Najafabadi, A. Ghasemi, R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr3+ substitution barium hexaferrite nanoparticles (BaFe10. 5− x Al1. 5Cr x O19), J. Clust. Sci. 27,3 (2016) 965-978. ‏‏.

DOI: 10.1007/s10876-015-0963-x

Google Scholar

[10] A. E. Yachmenev, S. S. Pushkarev, R. R. Reznik, R. A. Khabibullin, D. S. Ponomarev, Progress in Crystal Growth and Characterization of Materials, Prog. Cryst. Growth Charact. Mater. 66 (2020) 100485.

DOI: 10.1016/j.pcrysgrow.2020.100485

Google Scholar

[11] L. Y. Meng, B. Wang, M. G. Ma, K. L. Lin, the progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials, Mater. Today Chem. 1(2016) 63-83.

DOI: 10.1016/j.mtchem.2016.11.003

Google Scholar

[12] T. V. Gavrilović, D. J. Jovanović, M. D. Dramićanin, Synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions, In: Green Energy Environ. , MNT, Synthesis of Multifunctional Inorganic Materials, Elsevier, 2018, pp.55-81.

DOI: 10.1016/b978-0-12-813731-4.00002-3

Google Scholar

[13] ‏A. S. Hassanien, A. A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures, Appl. Phys. A 124,11 (2018). 1-16. ‏.

DOI: 10.1007/s00339-018-2180-6

Google Scholar

[14] F.A. Mutlak, A.B. Taha, U. M. Nayef, Synthesis and characterization of SnO2 on porous silicon for photo conversion, Silicon, 10,3 (2018) 967-974. ‏.

DOI: 10.1007/s12633-017-9554-9

Google Scholar

[15] A. Bandhu, S. Sutradhar, S. Mukherjee, J. M. Greneche, P. K. Chakrabarti, Synthesis, characterization and magnetic property of maghemite (γ-Fe₂O₃) nanoparticles and their protective coating with pepsin for bio-functionalization, Mater. Res. Bull. 70 (2015) 145-154. ‏.

DOI: 10.1016/j.materresbull.2015.04.035

Google Scholar

[16] A.B. Taha, M. Sh. Essa, B. T. Chiad, Spectroscopic Study of Iron Oxide Nanoparticles Synthesized Via Hydrothermal Method, Chem. Methodol. 6,12 (2022) 977-984.

Google Scholar

[17] N. Torres-Gómez, O. Nava, L. Argueta-Figueroa, R. García-Contreras, A. Baeza-Barrera, A. R. Vilchis-Nestor, Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature, J. Nanomater. 2019 (2019). ‏.

DOI: 10.1155/2019/7921273

Google Scholar

[18] K. M. Krishnan, Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy, IEEE Trans. Magn. 46,7 (2010) 2523-2558. ‏.

DOI: 10.1109/tmag.2010.2046907

Google Scholar

[19] M. T. Abedghars, H. Ferdenache, M. Ghers, B. Bezzına, F. Z. Gasmı, L. Taırı, A. Boukarı, Synthesis and characterization of a protective coating against corrosion based on scale and iron pigment, SN Appl. Sci. 1,12 (2019) 1-11. ‏.

DOI: 10.1007/s42452-019-1741-4

Google Scholar

[20] R. Rasheed, V. Meera, Synthesis of iron oxide nanoparticles coated sand by biological method and chemical method, Proc. Technol. 24(2016) 210-216. ‏.

DOI: 10.1016/j.protcy.2016.05.029

Google Scholar

[21] O. Karaagac, H. Kockar, Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles, J, supercon. novel. magn. 25,8(2012). 2777-2781. ‏.

DOI: 10.1007/s10948-011-1264-8

Google Scholar

[22] A.G. Roca, M.P. Morales, C.J. Serna, Synthesis of monodispersed magnetite particles from different organometallic precursors, Ieee Transa. magn. 42,10 (2006). 3025-3029. ‏.

DOI: 10.1109/tmag.2006.880111

Google Scholar

[23] S. M. Moosavinejad, M. Madhoushi, M. Vakili, D. Rasouli, Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy, Maderas: Cienc. Tecnol. 21,3 (2019) 381-392.

DOI: 10.4067/s0718-221x2019005000310

Google Scholar

[24] P. Tartaj, M. M. del Puerto, S. Veintemillas-Verdaguer, T. González-Carreño, C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. phys. Appl phys. 36, 13(2003) 182. ‏.

DOI: 10.1017/9781139381222.003

Google Scholar