[1]
P. Bagas, K. Thiya, B. D. N. Asep, Economic Perspective in the Production of Magnetite (Fe3O4) Nanoparticles by Co-Precipitation Method, Chem. Eng. J. 2, 2 (2018) 1– 4.
Google Scholar
[2]
P. Praserthdam, P. L. Silveston, O. Mekasuwandumrong, V. Pavarajarn, J. Phungphadung, P. Somrang, A new correlation for the effects of the crystallite size and calcination temperature on the single metal oxides and spinel oxides nanocrystal, Cryst. Growth Des. 4,1 (2004) 39-43. .
DOI: 10.1021/cg030001d
Google Scholar
[3]
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, E. L. Vander, R. N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 ,6 (2008) 2064-2110. .
DOI: 10.1021/cr068445e
Google Scholar
[4]
A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress in crystal growth and characterization of materials, 55,1-2 (2009) 22-45. .
DOI: 10.1016/j.pcrysgrow.2008.08.003
Google Scholar
[5]
S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, R. Massart, Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils, J. Mate. Rese. 13,10(1998) 2975-2981. .
DOI: 10.1557/jmr.1998.0407
Google Scholar
[6]
E. Baladi, F. Davar, A. Hojjati-Najafabadi, Synthesis and characterization of g–C3N4–CoFe2O4–ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic, Environ. Res. 215,2 (2022) 114270. .
DOI: 10.1016/j.envres.2022.114270
Google Scholar
[7]
B. K. Ozcelik, C. Ergun, Synthesis and characterization of iron oxide particles using spray pyrolysis technique, Cera. Inter. 4,12 (2015) 1994-2005. .
DOI: 10.1016/j.ceramint.2014.09.103
Google Scholar
[8]
J. An, K. Park, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. mate. 3,12 (2004) 891-895.
DOI: 10.1038/nmat1251
Google Scholar
[9]
A. H. Najafabadi, A. Ghasemi, R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr3+ substitution barium hexaferrite nanoparticles (BaFe10. 5− x Al1. 5Cr x O19), J. Clust. Sci. 27,3 (2016) 965-978. .
DOI: 10.1007/s10876-015-0963-x
Google Scholar
[10]
A. E. Yachmenev, S. S. Pushkarev, R. R. Reznik, R. A. Khabibullin, D. S. Ponomarev, Progress in Crystal Growth and Characterization of Materials, Prog. Cryst. Growth Charact. Mater. 66 (2020) 100485.
DOI: 10.1016/j.pcrysgrow.2020.100485
Google Scholar
[11]
L. Y. Meng, B. Wang, M. G. Ma, K. L. Lin, the progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials, Mater. Today Chem. 1(2016) 63-83.
DOI: 10.1016/j.mtchem.2016.11.003
Google Scholar
[12]
T. V. Gavrilović, D. J. Jovanović, M. D. Dramićanin, Synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions, In: Green Energy Environ. , MNT, Synthesis of Multifunctional Inorganic Materials, Elsevier, 2018, pp.55-81.
DOI: 10.1016/b978-0-12-813731-4.00002-3
Google Scholar
[13]
A. S. Hassanien, A. A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures, Appl. Phys. A 124,11 (2018). 1-16. .
DOI: 10.1007/s00339-018-2180-6
Google Scholar
[14]
F.A. Mutlak, A.B. Taha, U. M. Nayef, Synthesis and characterization of SnO2 on porous silicon for photo conversion, Silicon, 10,3 (2018) 967-974. .
DOI: 10.1007/s12633-017-9554-9
Google Scholar
[15]
A. Bandhu, S. Sutradhar, S. Mukherjee, J. M. Greneche, P. K. Chakrabarti, Synthesis, characterization and magnetic property of maghemite (γ-Fe₂O₃) nanoparticles and their protective coating with pepsin for bio-functionalization, Mater. Res. Bull. 70 (2015) 145-154. .
DOI: 10.1016/j.materresbull.2015.04.035
Google Scholar
[16]
A.B. Taha, M. Sh. Essa, B. T. Chiad, Spectroscopic Study of Iron Oxide Nanoparticles Synthesized Via Hydrothermal Method, Chem. Methodol. 6,12 (2022) 977-984.
Google Scholar
[17]
N. Torres-Gómez, O. Nava, L. Argueta-Figueroa, R. García-Contreras, A. Baeza-Barrera, A. R. Vilchis-Nestor, Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: effect of temperature, J. Nanomater. 2019 (2019). .
DOI: 10.1155/2019/7921273
Google Scholar
[18]
K. M. Krishnan, Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy, IEEE Trans. Magn. 46,7 (2010) 2523-2558. .
DOI: 10.1109/tmag.2010.2046907
Google Scholar
[19]
M. T. Abedghars, H. Ferdenache, M. Ghers, B. Bezzına, F. Z. Gasmı, L. Taırı, A. Boukarı, Synthesis and characterization of a protective coating against corrosion based on scale and iron pigment, SN Appl. Sci. 1,12 (2019) 1-11. .
DOI: 10.1007/s42452-019-1741-4
Google Scholar
[20]
R. Rasheed, V. Meera, Synthesis of iron oxide nanoparticles coated sand by biological method and chemical method, Proc. Technol. 24(2016) 210-216. .
DOI: 10.1016/j.protcy.2016.05.029
Google Scholar
[21]
O. Karaagac, H. Kockar, Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles, J, supercon. novel. magn. 25,8(2012). 2777-2781. .
DOI: 10.1007/s10948-011-1264-8
Google Scholar
[22]
A.G. Roca, M.P. Morales, C.J. Serna, Synthesis of monodispersed magnetite particles from different organometallic precursors, Ieee Transa. magn. 42,10 (2006). 3025-3029. .
DOI: 10.1109/tmag.2006.880111
Google Scholar
[23]
S. M. Moosavinejad, M. Madhoushi, M. Vakili, D. Rasouli, Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy, Maderas: Cienc. Tecnol. 21,3 (2019) 381-392.
DOI: 10.4067/s0718-221x2019005000310
Google Scholar
[24]
P. Tartaj, M. M. del Puerto, S. Veintemillas-Verdaguer, T. González-Carreño, C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. phys. Appl phys. 36, 13(2003) 182. .
DOI: 10.1017/9781139381222.003
Google Scholar