[1]
S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi, Properties of ultra-fine grain binderless cemented carbide RCCFN,, Int. Journal of Refractory Metals and Hard Materials, 13 (1995) 305-12.
DOI: 10.1016/0263-4368(95)92676-b
Google Scholar
[2]
M. Sherif El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature, J. Alloy Comp., 296 (2000) 175–82.
DOI: 10.1016/s0925-8388(99)00508-3
Google Scholar
[3]
M. Sherif El-Eskandarany, A. Alhazza, and L. Alhajji, Mechanically assisted solid state mixing and park plasma sintering for fabrication of Bulk Nanocomposite (WC/(10Co/4Cr))- Based ZrO2 Systems, Journal of Materials Engineering and Performance, 26 (2016) 1540-1550.
DOI: 10.1007/s11665-017-2580-3
Google Scholar
[4]
M. Sherif El-Eskandarany, Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation, J. Alloy Comp., 391 (2005) 228–35.
DOI: 10.1016/j.jallcom.2004.08.064
Google Scholar
[5]
H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, and J. Shon, Consolidation of binderless WC–TiC by high frequency induction heating sintering, Int. Journal of Refractory Metals and Hard Materials, 26 (2008) 48–54.
DOI: 10.1016/j.ijrmhm.2007.01.006
Google Scholar
[6]
D. Jiang, O. Van der Biest, and J. Vleugels, ZrO2–WC nanocomposites with superior properties, Journal of the European Ceramic Society, 27 (2007) 1247–1251.
DOI: 10.1016/j.jeurceramsoc.2006.05.028
Google Scholar
[7]
R. Raihanuzzaman, Z. Xie, S. J. Hong, and R. Ghomashchi, Powder refinement, consolidation and mechanical properties of cemented carbides — An overview, Powder Technology, 261 (2014) 1–13.
DOI: 10.1016/j.powtec.2014.04.024
Google Scholar
[8]
W. Su, Y. Sun, H. Wang, X. Zhang, and J. Ruan, Preparation and sintering of WC–Co composite powders for coarse grained WC–8Co hard metals, International Journal of Refractory Metals and Hard Materials, 45 (2014) 80-85.
DOI: 10.1016/j.ijrmhm.2014.04.004
Google Scholar
[9]
M. Sherif El-Eskandarany, Top-Down Approach Accompanied with Mechanical Solid-State Mixing for Producing Nanocomposite WC/Al2O3 Materials, Journal of Nanoparticles, 2 (2009) 14-22.
Google Scholar
[10]
M. Sherif El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, Elsevier Inc, Philadelphia, PA 19103-2899, the U.S.A, (2001).
Google Scholar
[11]
M. Sherif El-Eskandarany, and A. Inoue, Mechanically induced cyclic metastable phase transformations of Zr2Ni Alloys, Physical Review B, 75 (2007) 224109 – 1 to 224109-9.
Google Scholar
[12]
M. Sherif El-Eskandarany, Mechanical Alloying for Nanotechnology, Materials Science and Powder Metallurgy, Elsevier Inc, Philadelphia, PA 19103-2899, the U.S.A, (2014).
Google Scholar
[13]
M. Sherif El-Eskandarany, Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites, J. of Alloys Comp., 279 (1998) pp.263-271.
DOI: 10.1016/s0925-8388(98)00658-6
Google Scholar
[14]
C. Suryanarayana, and Nasser Al-Aqeeli, Mechanically alloyed nanocomposites, Progress in Materials Science, 58 (2013) 383–502.
DOI: 10.1016/j.pmatsci.2012.10.001
Google Scholar
[15]
G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, Critical evaluation of indention technique for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.
DOI: 10.1111/j.1151-2916.1981.tb10320.x
Google Scholar
[16]
Sudip Banerjee, Suswagata Poria, Goutam Sutradhar & Prasanta Sahoo, Mg-WC Nanocomposites—Recent Advances and Perspectives, Recent Advances in Layered Materials and Structures (2021) p.199–228.
DOI: 10.1007/978-981-33-4550-8_8
Google Scholar
[17]
AnilKumar Das, Recent advancements in nanocomposite coating manufactured by laser cladding and alloying Technique: A critical review, Materials Today: Proceedings, 57, 4, (2022), 1852-1857.
DOI: 10.1016/j.matpr.2022.01.078
Google Scholar