[1]
Renukadevi R, Sundaram R, Kasinathan K. Barium. Nanoparticles with robust catalytic, photocatalytic and humidity sensing properties. J Nanostruct (2020); 10:167–76.
Google Scholar
[2]
Manauwar Ali Ansari, Nusrat Jahan. Structural and Optical Properties of BaO Nanoparticles Synthesized by Facile Co-precipitation Method. Materials and Highlights (2021); 2:23-28.
DOI: 10.2991/mathi.k.210226.001
Google Scholar
[3]
Jahidul Haque Md, Masum Bellah Md, Rakibu Hassan Md, and Suhanur Rahman. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic, and optical properties. Nano Express (2020),2:1-13.
DOI: 10.1088/2632-959x/ab7a43
Google Scholar
[4]
Ulia de O. Primo, Carla Bittencourt, Selene Acosta, Ayrton Sierra-Castillo. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal From Wastewater. Frontiers in Chemisrty (2021),8:1-13.
DOI: 10.3389/fchem.2020.571790
Google Scholar
[5]
Fifere N, Airinei A, Timpu D, Rotaru A, Sacarescu L, Ursu L. Structural and magnetic properties of Ce doped ZnO nanoparticles, Journal of Alloys and Compounds (2018), 757:60-69.
DOI: 10.1016/j.jallcom.2018.05.031
Google Scholar
[6]
Petronela Pascariu, Mihaela Homocianu, Corneliu Cojocaru, Petrisor Samoila, Anton Airinei, Mirela Suchea. Preparation of La-doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Applied Surface Science (2019), 476:16-27.
DOI: 10.1016/j.apsusc.2019.01.077
Google Scholar
[7]
Irshad Ahmad, Muhammad Shoaib Akhtar, Ejaz Ahmed, Mukhtar Ahmad. Facile synthesis of Pr‑doped ZnO photocatalyst using sol-gel method and its visible-light photocatalytic activity. Journal of Materials Science: Materials in Electronics (2020), 31:1084–1093.
DOI: 10.1007/s10854-019-02620-2
Google Scholar
[8]
Thaweesaeng N, Suphankij S, Pecharapa W, Techitdheera W. Structural and optical properties of Cu-doped ZnO nanoparticles synthesized by co-precipitation method for solar energy harvesting application (2013), 2-4.
DOI: 10.1109/inec.2013.6466021
Google Scholar
[9]
Imen Ben Elkamel, Nejeh Hamdaoui, Amine Mezni, Ridha Ajjel & Lotfi Beji. Journal of Materials Science: Materials in Electronics (2019), 30: 9444–9454.
DOI: 10.1007/s10854-019-01276-2
Google Scholar
[10]
Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method Optical Materials. (2012), 34: 1946–1953.
DOI: 10.1016/j.optmat.2012.06.004
Google Scholar
[11]
Khataee, A., Karimi, A., Arefi-Oskoui, S., Soltani, R. D. C., Hanifehpour, Y., Soltani, B., & Joo, S. W. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrasonics sonochemistry, (2015); 22, 371-381.
DOI: 10.1016/j.ultsonch.2014.05.023
Google Scholar
[12]
Muhammad Sajjad, Inam Ullah, Khan M.I, Jamshid Khan, Yaqoob Khan M. Structural And Optical Properties of Pure and Copper Doped Zinc Oxide Nanoparticles. Results in Physics (2018), 9: 1301-1309.
DOI: 10.1016/j.rinp.2018.04.010
Google Scholar
[13]
Patterson, A. L. The Scherrer formula for X-ray particle size determination. Physical review, (1939); 56(10), 978.
DOI: 10.1103/physrev.56.978
Google Scholar
[14]
Bajpai, P. (2018). Biermann's Handbook of Pulp and Paper: Volume 1: Raw Material and Pulp Making. Elsevier (2018); 237–271.
Google Scholar
[15]
Rawat, M., Singh, J., Singh, J., Singh, C., Singh, A., Kukkar, D., & Kumar, S. Synthesis of Cu and Ce co-doped ZnO nanoparticles: crystallographic, optical, molecular, morphological and magnetic studies. Materials Science-Poland, (2017); 35(2), 427-434.
DOI: 10.1515/msp-2017-0040
Google Scholar
[16]
Ahsanulhaq Q, UmarA, and Hahn Y B. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology (2007), 18: 115603-115610.
DOI: 10.1088/0957-4484/18/11/115603
Google Scholar
[17]
Sun Y, Ndifor-Angwafor N G, Riley D J, Ashfold M N R. Synthesis and Photoluminescence of ultra-thin Zno nanowire/nanotube arrays formed by hydrothermal growth. Chem. Physics Letters (2006), 431: 352–357.
DOI: 10.1016/j.cplett.2006.09.100
Google Scholar
[18]
Yang, W. C., Wang, C. W., He, J. H., Chang, Y. C., Wang, J. C., Chen, L. J., ... & Gwo, S. Facile synthesis of large scale Er‐doped ZnO flower‐like structures with enhanced 1.54 μm infrared emission. physica status solidi (a), (2008); 205(5), 1190-1195.
DOI: 10.1002/pssa.200723476
Google Scholar