Effect of Ternary Element Addition on Properties of TiNi-Based Shape Memory Alloys for Engineering and Medical Applications

Article Preview

Abstract:

Shape memory alloys (SMAs) are a type of smart material and have excellent engineering and medical applications. TiNi binary alloys possess remarkable shape recovery, mechanical properties, corrosion resistance, and excellent biocompatibility. By ternary elements addition just like Au, Pt, Pd, Hf, and Zr, increases transformation temperatures, leading to high-temperature shape memory alloys (more than 100°C) but other elements (Fe, Cu, Co, and Mo) form low-temperature shape memory alloys, (lower than 100°C). In the present work, it is reported that the effect of ternary element addition on microstructural properties, shape memory properties, mechanical properties, corrosion resistance, and biocompatibility of ternary shape memory alloys. Ag, Au, and Cu-based TiNi ternary alloys have excellent biocompatibility. The addition of ternary elements such as Ag and Nb increases corrosion resistance, Fe rises the hysteresis loop, Hf enhances thermal stability, and Mo raises workability.

You might also be interested in these eBooks

Info:

Pages:

7-20

Citation:

Online since:

May 2023

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. I. Khan, H. Y. Kim, and S. Miyazaki, "A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications," Shape Mem. Superelasticity, 1, (2015) 85–106.

DOI: 10.1007/s40830-015-0019-y

Google Scholar

[2] S. Miyazaki and K. Otsuka, "Development of Shape Memory Alloys," ISIJ Int., 29, (1989) 353–377.

DOI: 10.2355/isijinternational.29.353

Google Scholar

[3] Y. Namigata, Y. Hattori, M. I. Khan, H. Y. Kim, and S. Miyazaki, "Enhancement of Shape Memory Properties through Precipitation Hardening in a Ti-Rich Ti-Ni-Pd High Temperature Shape Memory Alloy," Mater. Trans., 57, (2016) 241–249.

DOI: 10.2320/matertrans.mb201516

Google Scholar

[4] J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, "A review of shape memory alloy research, applications and opportunities," Mater. Des., 56, (2014) 1078–1113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[5] W. Cai, X. L. Meng, and L. C. Zhao, "Recent development of TiNi-based shape memory alloys," Curr. Opin. Solid State Mater. Sci., 9, (2005) 296–302.

DOI: 10.1016/j.cossms.2006.07.002

Google Scholar

[6] A. A. Yaroslavtsev et al., "Peculiarities of TiNi-based shape memory alloys local crystalline structure," J. Phys. Conf. Ser., 291, (2011) 210-219.

DOI: 10.1088/1742-6596/291/1/012025

Google Scholar

[7] M. Mansoorianfar et al., "Surface modification of orthopedic implants by optimized fluorine-substituted hydroxyapatite coating: Enhancing corrosion behavior and cell function," Ceram. Int., 46, (2020) 2139–2146.

DOI: 10.1016/j.ceramint.2019.09.197

Google Scholar

[8] M. Mansoorianfar et al., "Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications," Ultrason. Sonochem., 64, (2020) 104783.

DOI: 10.1016/j.ultsonch.2019.104783

Google Scholar

[9] A. Cheraghi, F. Davar, M. Homayoonfal, and A. Hojjati-Najafabadi, "Effect of lemon juice on microstructure, phase changes, and magnetic performance of CoFe2O4 nanoparticles and their use on release of anti-cancer drugs," Ceram. Int., 47, (2021) 20210–20219.

DOI: 10.1016/j.ceramint.2021.04.028

Google Scholar

[10] M. Mansoorianfar, R. Rahighi, A. Hojjati-Najafabadi, C. Mei, and D. Li, "Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing," Mater. Des., 198, (2021) 109314.

DOI: 10.1016/j.matdes.2020.109314

Google Scholar

[11] S. A. Raza et al., "Effect of Zirconium Oxide Reinforcement on Microstructural, Electrochemical, and Mechanical Properties of TiNi Alloy Produced via Powder Metallurgy Route," J. Eng. Mater. Technol. Trans. ASME, 143, (2021) 041009.

DOI: 10.1115/1.4051308

Google Scholar

[12] A. R. Syed, I. K. Muhammad, A. Mairaj, T. Danish, I. Asim, and B. N. Rida, "Effect of nano-silica volume reinforcement on the microstructure, mechanical, phase distribution and electrochemical behavior of pre-alloyed titanium-nickel (Ti-Ni) powder," Key Eng. Mater., 875, (2021) 60–69.

DOI: 10.4028/www.scientific.net/kem.875.60

Google Scholar

[13] Y. F. Zheng et al., "Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag," Acta Biomater., 7, ( 2011) 2758–2767.

DOI: 10.1016/j.actbio.2011.02.010

Google Scholar

[14] L. Casalena et al., "Mechanical behavior and microstructural analysis of NiTi-40Au shape memory alloys exhibiting work output above 400 °C," Intermetallics, 86, (2017) 33–44.

DOI: 10.1016/j.intermet.2017.03.005

Google Scholar

[15] L. Zhao, W. Cai, X. Meng, and A. Liu, "Effect of Ce addition on martensitic transformation behavior of TiNi shape memory alloys," Mater. Sci. Forum, 475–479, (2005) 1973–6.

DOI: 10.4028/www.scientific.net/msf.475-479.1973

Google Scholar

[16] E. Mohammad Sharifi, A. Kermanpur, and F. Karimzadeh, "The effect of thermomechanical processing on the microstructure and mechanical properties of the nanocrystalline TiNiCo shape memory alloy," Mater. Sci. Eng. A, 598, (2014) 183–189.

DOI: 10.1016/j.msea.2014.01.028

Google Scholar

[17] A. Fasching, D. Norwich, T. Geiser, and G. W. Paul, "An evaluation of a NiTiCo alloy and its suitability for medical device applications," J. Mater. Eng. Perform., 20, (2011) 641–645.

DOI: 10.1007/s11665-011-9845-z

Google Scholar

[18] L. Isola et al., "Load-biased martensitic transformation strain of Ti50-Ni47-Co3strip obtained by a twin-roll casting technique," Mater. Sci. Eng. A, 597, (2014) 245–252,.

DOI: 10.1016/j.msea.2013.12.102

Google Scholar

[19] A. Phukaoluan, A. Khantachawana, P. Kaewtatip, S. Dechkunakorn, and J. Kajornchaiyakul, "Improvement of mechanical and biological properties of TiNi alloys by addition of Cu and Co to orthodontic archwires," Int. Orthod., 14, (2016) 295–310.

DOI: 10.1016/j.ortho.2016.07.015

Google Scholar

[20] Q. Y. Wang and Y. F. Zheng, "The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8alloy for orthodontic use," Dent. Mater., 24, (2008) 1207–1211.

Google Scholar

[21] N. N. Sitnikov, A. V. Shelyakov, I. A. Khabibullina, and R. V. Sundeev, "Shape memory effect in a rapidly quenched Ti50Ni25Cu25 alloy," Russ. Metall., 2017, (2017) 794–800.

DOI: 10.1134/s0036029517100238

Google Scholar

[22] S. H. Chang and W. C. Chiu, "Selective leaching and surface properties of Ti50Ni50-xCux (x = 0-20 at.%) shape memory alloys for biomedical applications," Appl. Surf. Sci., 324, (2015) 106–113.

DOI: 10.1016/j.apsusc.2014.10.030

Google Scholar

[23] M. S. El-Eskandrany and A. Al-Azmi, "Potential applications of cold sprayed Cu50Ti20Ni30metallic glassy alloy powders for antibacterial protective coating in medical and food sectors," J. Mech. Behav. Biomed. Mater., 56, (2016) 183–194.

DOI: 10.1016/j.jmbbm.2015.11.030

Google Scholar

[24] H. J. Jiang, C. B. Ke, S. S. Cao, X. Ma, and X. P. Zhang, "Phase transformation and damping behavior of lightweight porous TiNiCu alloys fabricated by powder metallurgy process," Trans. Nonferrous Met. Soc. China (English Ed., 23, (2013) 2029–2036.

DOI: 10.1016/s1003-6326(13)62692-8

Google Scholar

[25] M. Manjaiah, S. Narendranath, S. Basavarajappa, and V. N. Gaitonde, "Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50-xCuxshape memory alloy," Precis. Eng., 41, ( 2015) 68–77.

DOI: 10.1016/j.precisioneng.2015.01.008

Google Scholar

[26] Z. Y. Suo, K. Q. Qiu, Q. F. Li, Y. L. Ren, and Z. Q. Hu, "Ti-Cu-Ni alloys with high strength and good plasticity," J. Alloys Compd., 463, (2008) 564–568.

DOI: 10.1016/j.jallcom.2007.09.084

Google Scholar

[27] C. Yang, Q. R. Cheng, L. H. Liu, Y. H. Li, and Y. Y. Li, "Effect of minor Cu content on microstructure and mechanical property of NiTiCu bulk alloys fabricated by crystallization of metallic glass powder," Intermetallics, 56, (2014) 37–43.

DOI: 10.1016/j.intermet.2014.08.009

Google Scholar

[28] S. H. Chang, J. S. Liou, and B. Y. Huang, "Selective leaching and surface properties of tinife shape-memory alloys," Mater. Tehnol., 51, (2017) 251–257.

DOI: 10.17222/mit.2015.269

Google Scholar

[29] G. Karthik, B. Kashyap, and T. R. Prabhu, "Processing, properties and applications of Ni-Ti-Fe shape memory alloys," Mater. Today Proc., 4, (2017) 3581–3589.

DOI: 10.1016/j.matpr.2017.02.250

Google Scholar

[30] Y. F. Li, X. Feng, X. J. Mi, X. Q. Yin, and X. Y. Kang, "Microstructure and Mechanical Properties of TiNiFe Shape Memory Alloys with Different Compositions," Mater. Sci. Forum, 849, (2016) 295–301.

DOI: 10.4028/www.scientific.net/msf.849.295

Google Scholar

[31] M. L. M. M. Jim, V. Marquina, S. A. R. Ridaura, R. G. R. Escudero, and D. Rios-jara, "Structural Transitions in a TiNiFe Shape Memory Alloy," Mater. Charact., 193, (1994) 189–193.

DOI: 10.1016/1044-5803(94)90088-4

Google Scholar

[32] S. Wang, X. Mi, X. Yin, and Y. Li, "Deformation behavior of TiNiFe alloy in isothermal compression," Rare Met., 31, (2012) 323–327.

DOI: 10.1007/s12598-012-0513-8

Google Scholar

[33] Y. qiu ZHANG, S. yong JIANG, X. ming ZHU, Y. nan ZHAO, Y. long LIANG, and D. SUN, "Influence of Fe addition on phase transformation behavior of NiTi shape memory alloy," Trans. Nonferrous Met. Soc. China (English Ed., 27, (2017) 1580–1587.

DOI: 10.1016/s1003-6326(17)60179-1

Google Scholar

[34] X. L. Meng, W. Cai, Y. F. Zheng, and L. C. Zhao, "Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys," Mater. Sci. Eng. A, 438–440, (2006) 666–670.

DOI: 10.1016/j.msea.2006.01.099

Google Scholar

[35] X. L. Meng, W. Cai, L. M. Wang, Y. F. Zheng, L. C. Zhao, and L. M. Zhou, "Microstructure of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy," Scr. Mater., 45, (2001) 1177–1182.

DOI: 10.1016/s1359-6462(01)01147-2

Google Scholar

[36] O. Benafan et al., "Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20high temperature shape memory alloy," Intermetallics, 50, (2014) 94–107.

DOI: 10.1016/j.intermet.2014.02.006

Google Scholar

[37] M. Elahinia et al., "Additive manufacturing of NiTiHf high temperature shape memory alloy," Scr. Mater., 145, (2018) 90–94.

DOI: 10.1016/j.scriptamat.2017.10.016

Google Scholar

[38] D. R. Coughlin, P. J. Phillips, G. S. Bigelow, A. Garg, R. D. Noebe, and M. J. Mills, "Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy," Scr. Mater., 67, (2012) 112–11.

DOI: 10.1016/j.scriptamat.2012.03.036

Google Scholar

[39] X. . Meng, W. Cai, Y. . Zheng, Y. . Tong, L. . Zhao, and L. . Zhou, "Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy," Mater. Lett., 55, (2002) 111–115.

DOI: 10.1016/s0167-577x(01)00631-0

Google Scholar

[40] X. L. Meng, Y. F. Zheng, Z. Wang, and L. C. Zhao, "Shape memory properties of the Ti36Ni49Hf15 high temperature shape memory alloy," Mater. Lett., 45, (2000) 128–132.

DOI: 10.1016/s0167-577x(00)00091-4

Google Scholar

[41] F. Liu, Z. Ding, Y. Li, and H. Xu, "Phase transformation behaviors and mechanical properties of TiNiMo shape memory alloys," 13, (2005) 357–360.

DOI: 10.1016/j.intermet.2004.07.024

Google Scholar

[42] Y. Yan, W. Jin, and X. W. Li, "Texture Development in the Ni47Ti44Nb9 Shape Memory Alloy During Successive Thermomechanical Processing and Its Effect on Shape Memory and Mechanical Properties," Metall. Mater. Trans. A, 44, ( 2013) 978–989.

DOI: 10.1007/s11661-012-1426-8

Google Scholar

[43] M. Piao, S. Miyazaki, K. Otsuka, and N. Nishida, "Effects of Nb addition on the microstructure of Ti-Ni alloys.pdf," Materials Transactions, 33, (1992) 337–345.

DOI: 10.2320/matertrans1989.33.337

Google Scholar

[44] M. Piao, S. Miyazaki, and K. Otsuka, "Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy," Materials Transactions, 33, (1992) 346–353.

Google Scholar

[45] C. Bewerse, L. C. Brinson, and D. C. Dunand, "Microstructure and mechanical properties of as-cast quasibinary NiTi-Nb eutectic alloy," Mater. Sci. Eng. A, 627, (2015) 360–368.

DOI: 10.1016/j.msea.2014.12.090

Google Scholar

[46] N. N. Popov et al., "Effect of thermomechanical treatment on the structure and functional properties of a 45Ti-45Ni-10Nb alloy," Russ. Metall., 2007, (2007) 59–64.

DOI: 10.1134/s0036029507010119

Google Scholar

[47] C. Li, Y. F. Zheng, and L. C. Zhao, "Electrochemical corrosion behaviour of Ti44Ni47Nb9alloy in simulated body fluids," Mater. Sci. Eng. A, 438–440, (2006) 504–508.

DOI: 10.1016/j.msea.2006.02.185

Google Scholar

[48] N. N. Popov et al., "Investigation of thermomechanical characteristics of shape-memory alloys of the Ti-Ni-Nb system and of the effect of heat treatment on them," Phys. Met. Metallogr., 114, (2013) 348–357.

DOI: 10.1134/s0031918x13040078

Google Scholar

[49] J. A. Monroe, I. Karaman, D. C. Lagoudas, G. Bigelow, R. D. Noebe, and S. Padula, "Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling," Scr. Mater., 65, (2011) 123–126.

DOI: 10.1016/j.scriptamat.2011.03.019

Google Scholar

[50] K. V. Ramaiah, C. N. Saikrishna, Gouthama, and S. K. Bhaumik, "Microstructure and transformation behaviour of Ni75- XTiXPd25 high temperature shape memory alloys," J. Alloys Compd., 554 (2013) 319–326.

DOI: 10.1016/j.jallcom.2012.11.165

Google Scholar

[51] K. V. Ramaiah, C. N. Saikrishna, Gouthama, and S. K. Bhaumik, "Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability," Mater. Des., 56, (2014) 78–83.

DOI: 10.1016/j.matdes.2013.10.079

Google Scholar

[52] F. Yang, L. Kovarik, P. J. Phillips, R. D. Noebe, and M. J. Mills, "Characterizations of precipitate phases in a Ti-Ni-Pd alloy," Scr. Mater., 67, (2012) 145–148.

DOI: 10.1016/j.scriptamat.2012.04.003

Google Scholar

[53] D. Chovan, M. Nolan, and S. A. M. Tofail, "First principles simulations of elastic properties of radiopaque NiTiPt," J. Alloys Compd., 630, (2015) 54–59.

DOI: 10.1016/j.jallcom.2014.12.185

Google Scholar

[54] L. Kovarik et al., "Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys," Acta Mater., 58, (2010) 4660–4673.

DOI: 10.1016/j.actamat.2010.04.039

Google Scholar

[55] L. O'Donoghue et al., "X-ray and microstructural investigation of NiTiPt alloys homogenised at intermediate to high temperatures," Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, (2010) 287–290.

DOI: 10.1016/j.nimb.2009.07.015

Google Scholar

[56] C. L. Tan, X. H. Tian, G. J. Ji, T. L. Gui, and W. Cai, "Elastic property and electronic structure of TiNiPt high-temperature shape memory alloys," Solid State Commun., 147, (2008) 8–10.

DOI: 10.1016/j.ssc.2008.04.032

Google Scholar

[57] Y. Du, H. Xu, Y. Zhou, Y. Ouyang, and Z. Jin, "Phase equilibria of the Ni-Ti-Ta system at 927 °C," Mater. Sci. Eng. A, 448, ( 2007) 210–215.

DOI: 10.1016/j.msea.2006.11.110

Google Scholar

[58] H. Li, Y. Cong, Y. Zheng, and L. Cui, "In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity," Mater. Sci. Eng. C, 60, ( 2016) 554–559.

DOI: 10.1016/j.msec.2015.12.006

Google Scholar

[59] N. B. Morgan, "Medical shape memory alloy applications - The market and its products," Mater. Sci. Eng. A, 378, (2004)16–23.

Google Scholar

[60] S. F. Hsieh and S. K. Wu, "Room-temperature phases observed in Ti53−xNi47Zrx high-temperature shape memory alloys," J. Alloys Compd., 266, (1998) 276–282.

DOI: 10.1016/s0925-8388(97)00448-9

Google Scholar

[61] S. F. Hsieh and S. K. Wu, "A Study on Ternary Ti-rich TiNiZr Shape Memory Alloys," Mater. Charact., 41, (1998) 151–162.

DOI: 10.1016/s1044-5803(98)00032-1

Google Scholar

[62] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, C. Hayrettin, and R. D. Noebe, "Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys," Acta Mater., 121, (2016) 374–383.

DOI: 10.1016/j.actamat.2016.08.065

Google Scholar

[63] Y. X. Tong et al., "Two-way shape memory effect of TiNiSn alloys developed by martensitic deformation," Mater. Sci. Eng. A. 550, (2012) 434–437.

DOI: 10.1016/j.msea.2012.04.052

Google Scholar