[1]
Manhas N., Kumar L.S., Adimule V., Photoluminescence and supercapacitive properties of carbon dots nanoparticles: A review, Journal of Metastable and NanocrystallineMaterials37, 2023, 1-22.
DOI: 10.4028/p-lpi6yw
Google Scholar
[2]
Manhas N., Kumar L.S., Adimule V., Early‐Stage Diagnosis of Breast Cancer: Amelioration in Approaches, Drug and Therapy Development for Triple Negative Breast Cancer, 2023,1-34.
DOI: 10.1002/9783527841165.ch1
Google Scholar
[3]
Adimule V., Manhas N., Nandi S., Additively Manufactured Electrochemical and Biosensors,In Practical Implementations of Additive Manufacturing Technologies, Singapore: Springer Nature Singapore, 20123, 191-204.
DOI: 10.1007/978-981-99-5949-5_9
Google Scholar
[4]
Manhas N., Adimule V., Lakshminarayana P., Keri R., Kumar L.S., Bathula C., Utilization of Co2+ doped Eu2O3 nanostructures and their effect on the dielectric and photoisomerization of liquid crystals, Physics of Fluids35(10), 2023, 107112.
DOI: 10.1063/5.0171578
Google Scholar
[5]
Rajendrachari S., Esgin H., Yilmaz V. M., Caglar Y., Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells, Journal of Science: Advanced Materials and Devices 5, 2020, 185-191.
DOI: 10.1016/j.jsamd.2020.04.005
Google Scholar
[6]
Rajendrachari S., Taslimi P., Karaoglanli A.C., Uzun O., Alp E., Jayaprakash G.K., Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method, Arabian Journal of Chemistry 14, 2021, 103180.
DOI: 10.1016/j.arabjc.2021.103180
Google Scholar
[7]
Reddy S., Kumaraswamy B.E., Aruna S., Kumar M., Rajendrachari S., Jayadevappa H., Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid, Chemical sensors 2, 2012, 1-8.
Google Scholar
[8]
Rajendrachari S., Kumaraswamy B.E., Simultaneous electro-generation and electro-deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application, SN Applied Sciences 2, 2020, 1-10.
DOI: 10.1007/s42452-020-2785-1
Google Scholar
[9]
Rajendrachari S., Ramakrishna D., Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform, Woodhead Publishing, 2022, 3-25.
DOI: 10.1016/b978-0-12-823788-5.00010-7
Google Scholar
[10]
Rajendrachari S, Chaira D., Kumaraswamy B.E., Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, International Journal of Scientific & Engineering Research 6, 2015, 1863-1871.
Google Scholar
[11]
Chandrashekar B.N., Kumaraswamy B.E., Pandurangachar M., Sathisha T.V., Sherigara B.S., Electropolymerisation of l-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, Colloid Surface B. 88, 2011, 413– 418.
DOI: 10.1016/j.colsurfb.2011.07.023
Google Scholar
[12]
Jayaprakash G.K., Kumaraswamy B.E., Rajendrachari S., Sharma S.C., Moreno R.F., Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications, Journal of Molecular Liquids 334, 2021, 116348.
DOI: 10.1016/j.molliq.2021.116348
Google Scholar
[13]
Rajendrachari S., Kumaraswamy B.E., Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and their application as dopamine and hydrogen peroxide sensors, Physical Chemistry Research 8, 2020, 1-18.
Google Scholar
[14]
Adimule V., Manhas N., Sharma K., Bathula C., Structural, optical, Raman characteristics of C-nanospheres incorporated Gd2O3: SeO2 nanoclusters for energy storage applications. Physics of Fluids, 35(10), 2023, 107121.
DOI: 10.1063/5.0171702
Google Scholar
[15]
Adimule V., Nandi S., Manhas N., Lakshminarayana P., Surfactant-based Ion-selective Electrodes. Surfactant-based Sensors in Chemical and Biochemical Detection, 2023, 193.
DOI: 10.1039/bk9781837671182-00193
Google Scholar
[16]
Adimule V., DV.S, Sharma K., Manhas N., Bathula, C., Development of Highest Value of the Measured Efficiency of Mesoporous Petal Shaped Europium (III) Doped Cobalt Tetroxide@ Cupric Oxide Hybrid Nanomaterials for Enhanced Room Temperature Photoluminescence and Fluorescence Decay Properties. Journal of Fluorescence, 2023,1-17.
DOI: 10.1007/s10895-023-03471-1
Google Scholar
[17]
Adimule V., Medapa S., Kumar L.S., Rao P.K. Synthesis, Characterization and Cytotoxic evaluation of Novel derivatives of 1-[2-(Aryl substituted)-5-(4'-Fluoro-3-methyl biphenyl-4-yl)-[1,3,4] oxadiazole-3-yl]-ethanone. International Journal of Pharmaceutical Chemistry, 4(3), 2014,88-91.
Google Scholar
[18]
Pai M., Batakurki S., Adimule V., Yallur B.C. Optical Graphene for Biosensor Application: A Review. Applied Mechanics and Materials, 908, 2022, 51-68.
DOI: 10.4028/p-rs3qal
Google Scholar
[19]
Challa M., Ambika M.R., Usharani S.R., Yallur B.C., Adimule V., Enhancement of Band Gap Energy and Crystallinity of Cu-MOFs Due to Doping of Nano Metal Oxide. Advanced Materials Research, 1173, 2022, 13-22.
DOI: 10.4028/p-f9yx5h
Google Scholar
[20]
Adimule V., Gowda A.H.J., Nandi, S.S., Bowmik D., Antimalarial activity of novel class of 1, 3‐benzoxaborole derivatives containing 1, 3, 4‐oxadiazole moiety. Drug Development for Malaria: Novel Approaches for Prevention and Treatment, 2022, 285-302.
DOI: 10.1002/9783527830589.ch12
Google Scholar
[21]
Adimule V., Batakurki S., Bhat V.S., Yallur B.C., Hegde G., Bathula, C., Enhanced dielectric and supercapacitive properties of spherical like Sr doped Sm2O3@ CoO triple oxide nanostructures. Journal of Energy Storage, 57,2023, 106318.
DOI: 10.1016/j.est.2022.106318
Google Scholar
[22]
Nandi S.S., Adimule V., Kadapure S.A., Kerur S.S., Rare Earth Based Nanocomposite Materials for Prominent Performance Supercapacitor: A Review. Applied Mechanics and Materials, 908, 2022, 3-18.
DOI: 10.4028/p-rff302
Google Scholar
[23]
Adimule V.M., Batakurki S.R., Pai M.M., Nandi S., Donor–Acceptor‐Based Heterocyclic Compounds as Chemotherapy and Photothermal Agents in Treatment of Breast Cancer Cell. Drug and Therapy Development for Triple Negative Breast Cancer, 2023, 201-219.
DOI: 10.1002/9783527841165.ch11
Google Scholar
[24]
Adimule V., Kendrekar P., Yallur B.C., Sawant A.D., Synthesis, Characterization, and Antibacterial Activity of Novel Poly-3-butyl Thiophene Embedded TiO2@ ZnO Hybrid Nanocomposites. BioNanoScience, 2023, 1-17.
DOI: 10.1007/s12668-023-01160-8
Google Scholar
[25]
A.K. Subramani A. K., Kondo K., Tada M., Abe M., Yoshimura M., Matsushita N., Spinel ferrite films by a novel solution process for high frequency applications, Materials Chemistry and Physics 123, 2010, 16-19.
DOI: 10.1016/j.matchemphys.2010.02.031
Google Scholar
[26]
Hu W., Qin N., Wu G., Lin Y., Li S., Bao D., Opportunity of Spinel Ferrite Materials in Nonvolatile Memory Device Applications Based on Their Resistive Switching Performances, J. Am. Chem. Soc. 134 (36), 2012,14658–14661.
DOI: 10.1021/ja305681n
Google Scholar
[27]
Kharat P. B., Somvanshi S. B., Khirade P., Jadhav K. M., Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method, J. Mater. Sci.: Mater. Electron 30,2019, 6564–6574.
DOI: 10.1007/s10854-019-00963-4
Google Scholar
[28]
Jadhav S.A., Somvanshi S.B., Khedkar M.V., Patade S.R., Jadhav K.M., Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B, J. Mater. Sci.: Mater. Electron 31,2020,11352-11365.
DOI: 10.1007/s10854-020-03684-1
Google Scholar
[29]
Patade S.R., Andhare D.D., Somvanshi S.B., Kharat P.B., More S.D., Jadhav K.M., Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia, Nanomaterials and Energy 9(1), 2020, 813.
DOI: 10.1680/jnaen.19.00006
Google Scholar
[30]
Kale S.B., Somvanshi S.B., Sarnaik M.N., More S.D., Shukla S.J., Jadhav K.M., Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application, AIP Conference Proceedings 1953,2018,030193.
DOI: 10.1063/1.5032528
Google Scholar
[31]
Gadkari A.B., Shinde T.J., Vasambekar P.N., Electrical and Humidity Sensing Study of Nanocrtsyallite Mg-Cd Ferrites, Sensor and transducer Journal 137(2), 2012,145-154.
Google Scholar
[32]
Dippong T, Levei E.A., Cadar O, Mesaros A, Borodi G, Sol-gel synthesis of CoFe2O4: SiO2 nanocomposites–insights into the thermal decomposition process of precursors, Journal of analytical and applied pyrolysis 125, 2017,169-177.
DOI: 10.1016/j.jaap.2017.04.005
Google Scholar
[33]
Repp S., Harputlu E., Gurgen S., Castellano M., Kremer N., Pompe N, Hoffmann J.W., Thomann R., Emen F., Weber S., Pcakoglu K.E., Synergetic effects of Fe 3+ doped spinel Li 4 Ti 5 O 12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors, Nanoscale 10(4), 2018, 1877-1884.
DOI: 10.1039/c7nr08190a
Google Scholar
[34]
Folgueras L.C., Alves M.A., Rezende M.C., Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline, Materials Research 13, 2010 197-201.
DOI: 10.1590/s1516-14392010000200013
Google Scholar
[35]
Maaz K., Karim S., Mashiatullah A., Liu J., Hou M.D., Sun Y.M., Duan J.L., Yao H.J., Mo D., Chen Y.F., Structural analysis of nickel doped cobalt ferrite nanoparticles prepared by coprecipitation route, Physica B: Condensed Matter 404, 2009, 3947-3951.
DOI: 10.1016/j.physb.2009.07.134
Google Scholar
[36]
Nayak P.K., Synthesis and characterization of cadmium ferrite, Materials Chemistry and Physics 112, 2008, 24-26.
Google Scholar
[37]
Reddy C.V., Byon C., Narendra B., Baskar D., Srinivas G., Shim J., Prabhakar S.V.P. Vattikuti, Investigation of structural, thermal and magnetic properties of cadmium substituted cobalt ferrite nanoparticles, Superlattices and Microstructures 82, 2015, 165-173.
DOI: 10.1016/j.spmi.2015.02.014
Google Scholar
[38]
Farea A.M.M., Kumar S., Batoo K.M., Yousef A., Lee C.G., Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites, Journal of Alloys and Compounds 464, 2008, 361-369.
DOI: 10.1016/j.jallcom.2007.09.126
Google Scholar
[39]
Abdeen A.M., Hemeda O.M., Assem E.E., El-Sehly M.M., Structural, electrical and transport phenomena of Co ferrite substituted by Cd, Journal of Magnetism and Magnetic Materials 238, 2002, 75–83.
DOI: 10.1016/s0304-8853(01)00465-6
Google Scholar
[40]
Kulkarni A.B., Mathad S.N., Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites, J. Mater. Sci. Energy Technol. 2, 2019,455-462.
DOI: 10.1016/j.mset.2019.03.003
Google Scholar
[41]
Surendra M.K., Kannan D., Rao M.S. R., Magnetic and dielectric properties study of cobalt ferrite nanoparticles synthesized by co-precipitation method, J. Materials Research Society Symposium Proceedings,1368, 2011, 11-40.
DOI: 10.1557/opl.2011.1281
Google Scholar
[42]
Rafferty A., Prescott T, Brabazon D., Sintering behaviour of cobalt ferrite ceramic, Ceramics International 34 (1), 2008, 15-21.
DOI: 10.1016/j.ceramint.2006.07.012
Google Scholar
[43]
Saragi T., Nurjannah S., Novia R., Syakir N., Simanjuntak E., Safriani L., Risdiana R., Bahtiar A., Synthesis of Cobalt Ferrite Particles by Utilized Sol-Gel Method, J. Mater. Sci. Forum, 827, 2015, 219-222.
DOI: 10.4028/www.scientific.net/msf.827.219
Google Scholar
[44]
Kuciakowski J., Stepien J., Zukrowski J., Lachowicz D., Zywczak A., Gajewska M., Przybylski M., Pollastri S., Olivi L. Sikora M., Kmita A., Thermal Decomposition Pathways of ZnxFe3–xO4 Nanoparticles in Different Atmospheres, Ind. Eng. Chem. Res. 61 (34), 2022, 12532–12544.
DOI: 10.1021/acs.iecr.2c01572
Google Scholar
[45]
Allaedini G., Tasirin S.M., Aminayi P., Magnetic properties of cobalt ferrite synthesized by hydrothermal method, International Nano Letters 5, 2015, 183-186.
DOI: 10.1007/s40089-015-0153-8
Google Scholar
[46]
Henaish A.M.A., Hemeda O.M. Alqarni A., Refaay D.E.E., Hamad M.A., The role of flash auto-combustion method and Mn doping in improving dielectric and magnetic properties of CoFe2O4, J. Appl.Phys.A.126, 2020, 1-8.
DOI: 10.1007/s00339-020-04030-2
Google Scholar
[47]
Shashidharagowda H., Mathad S.N., Effect of incorporation of copper on structural properties of spinel nickel manganites by co-precipitation method, J.Mater. Sci.Energy. Technol.3, 2020, 201-208.
DOI: 10.1016/j.mset.2019.10.008
Google Scholar
[48]
Vishwaroop R., Mathad S.N., Synthesis, structural, WH plot and size-strain analysis of nano cobalt doped MgFe2O4 ferrite, J.Sci.Sinter. 52, 2020, 349-358.
DOI: 10.2298/sos2003349v
Google Scholar
[49]
Bader N., Benkhayal A.A., Zimmermann B., Co-precipitation as a sample preparation technique for trace element analysis: an overview, Int.J.Chem.Sci.12, 2014, 519-525.
Google Scholar
[50]
Patil M.R., Rendale M.K., Mathad S.N., Pujar R.B., Structural and IR study of Ni0.5–x Cd x Zn0.5Fe2O4, Int. J. Self-Propagating High- Temp.Synth. 24, 2015, 241–245.
DOI: 10.3103/s1061386215040081
Google Scholar
[51]
Kashid P., Shedam M., Kulkarni A.B., Mathad S.N., Shedam R., Synthesis and structural studies of nano Co0.85Cd0.15Fe2O4 Ferrite by Co-precipitation method, J.Adv.Phys.6, 2017,1-4.
DOI: 10.1166/jap.2017.1373
Google Scholar
[52]
Zhang Y., Yang Z., Yin D, Liu Y., Fei C., Xiong R., Shi J., Yan G., Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method, Journal of Magnetism and Magnetic Materials 322, 2010, 3470-3475.
DOI: 10.1016/j.jmmm.2010.06.047
Google Scholar
[53]
Das S., Manoharan C., Venkateshwarlu M., Dhamodharan P., Structural, optical, morphological and magnetic properties of nickel doped cobalt ferrite nanoparticles synthesized by hydrothermal method, J. Mater. Sci. Mater. Electron. 30, 2019,19880-19893.
DOI: 10.1007/s10854-019-02355-0
Google Scholar
[54]
Dhamodharan P., Manoharan C, Dhanapandian S, Bououdina M, Ramalingam S., Preparation and characterization of spray deposited Sn-doped ZnO thin films onto ITO subtracts as photoanode in dye sensitized solar cell, J. Mater. Sci. 26, 2015, 4830–4839.
DOI: 10.1007/s10854-015-2990-7
Google Scholar
[55]
Priyadharsini P., Pradeep A., Rao P.S., Chandrasekaran G., Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites, J.Mater. Chem. Phys.116, 2009, 207–213.
DOI: 10.1016/j.matchemphys.2009.03.011
Google Scholar
[56]
Dalawai S.P., Shinde T.J., Gadkari A.B., Vasambekar P.N, Structural properties of Cd–Co ferrites, Bull. Mater. Sci.36, 2013, 919– 922.
DOI: 10.1007/s12034-013-0529-1
Google Scholar
[57]
Molakeri A.S., Kalyane S., Mathad S.N., Elastic Properties of nickel ferrite synthesized by combustion and microwave method using FT-IR spectra, Int. J. Adv. Sci. Eng. Inf. Technol.3, 2017, 422-427.
Google Scholar
[58]
Rahimi M., Eshraghi M., Kameli P., Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles, J. Ceram. Int. 40, 2014, 15569-15575.
DOI: 10.1016/j.ceramint.2014.07.033
Google Scholar
[59]
Sushant, S.K., Choudhari, N.J., Patil, S. N.Mathad, Development of M–NiFe2O4 (Co, Mg, Cu, Zn, and Rare Earth Materials) and the Recent Major Applications. Int. J Self-Propag. High-Temp. Synth. 32, 2023, 61–116.
DOI: 10.3103/s1061386223020061
Google Scholar
[60]
Pathan, A. T., Shaikh, A. M., Sushant, S. K., & Mathad, S. N., Effect of synthesis methods and comparative study of structural properties of micro and nano Ferrites. Physics and Chemistry of Solid State, 24(1), 2023, 77-83.
DOI: 10.15330/pcss.24.1.77-83
Google Scholar
[61]
Galagali, S. L., Patil, R. A., Adaki, R. B., Hiremath, C. S., Mathad, S. N., Pujar, A. S., & Pujar, R. B., Fourier transform infrared spectroscopy and elastic properties of Mg1-x Cdx Fe2O4 ferrite systems. Songklanakarin Journal of Science & Technology, 41(5), 2019.
DOI: 10.3103/s1061386218020073
Google Scholar