Characterization of GO Added ZnO Crystal Growth Using Electric Current Heating Method

Article Preview

Abstract:

ZnO has attractive and great properties especially in the fields of photonics, electronics and optics and it is widely used in the manufacturing industry of photodetectors, laser diodes and gas detectors. Therefore, various methods have been carried out to produce ZnO crystals and one of them is the Electric Current Heating method. Electric Current Heating (ECH) method is a fabrication technique applied in researches to grow ZnO crystal on a ceramic bar. This method is preferred because of it is easy to operate in laboratory, low growth temperature and also low cost. In this research, by using powder metallurgy process, Graphene Oxide/GO (in various weight percentage) added into ZnO was pelletized in a compaction die with dimension of 14.95 mm x 30 mm x 40 mm and pressure of 4 bar. The pellet green body was then sintered at 1100 °C with rate 10.0 °C/min for 3 hours. The sintered GO added ZnO ceramic was cut into ceramic bar with dimensio of 13mm x 2mm x 2mm. ECH with current 3 A and applied voltage of 30 V was used to heat the ceramic bar to produce crystals. Under scanning electron observation, it was found different crystal-like structures for each percentage GO addition. UV-Vis measurement has shown that each crystal-like structure of a GO added ZnO has own degree of energy absorbsion because of different band gap. Addition GO into ZnO would increase band gap of pure ZnO.

You might also be interested in these eBooks

Info:

Pages:

7-13

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ü. D. Özgür, V. Avrutin, and H. Morkoç, Zinc oxide materials and devices grown by MBE. 2013.

DOI: 10.1016/b978-0-12-387839-7.00016-6

Google Scholar

[2] C. J. Frederickson, J. Y. Koh, and A. I. Bush, "The neurobiology of zinc in health and disease" Nat. Rev. Neurosci., vol. 6, no. 6, p.449–462, 2005.

DOI: 10.1038/nrn1671

Google Scholar

[3] M. A. Borysiewicz, "ZnO as a functional material, a review,"Crystals, vol. 9, no. 10, 2019.

Google Scholar

[4] R. S. Nicholas Eastaugh, Valentine Walsh, Tracey Chaplin, "The Pigment Compendium."

Google Scholar

[5] A. Moezzi, A. M. McDonagh, and M. B. Cortie, "Zinc oxide particles: Synthesis, properties and applications,"Chem. Eng. J., vol. 185–186, p.1–22, 2012.

DOI: 10.1016/j.cej.2012.01.076

Google Scholar

[6] L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO - nanostructures, defects, and devices,"Mater. Today, vol. 10, no. 5, p.40–48, 2007.

DOI: 10.1016/s1369-7021(07)70078-0

Google Scholar

[7] A. G. E. Sutjipto, H. H. Chi, A. Shaitir, and A. Legowo, "High photoluminescence spectroscopy on high purity ZnO crystal growth by electric current heating method,"Mater. Sci. Forum, vol. 981 MSF, p.45–50, 2020.

DOI: 10.4028/www.scientific.net/msf.981.45

Google Scholar

[8] AF Ling, A Shaitir, A Legowo, AGE Sutjipto. The Effect of Green Body Pressure, Sintering Time and Electric Current on ZnO Crystal Growth by Electric Current Heating Method. Materials Science Forum. 981. 3-10, 2020.

DOI: 10.4028/www.scientific.net/msf.981.3

Google Scholar

[9] A.G.E. Sutjipto, M.H. Mazwir, H.L. Lee, S. Miskom, A.G. Shaitir, M.A. Jusoh, R. Othman: Effect of Compaction Pressure of Green Body and Heating Current on Photoluminescence Property of ZnO Crystal Grown by Electric Current Heating Method. IOP Conf. Series: Materials Science and Engineering 290, 012043, 2018.

DOI: 10.1088/1757-899x/290/1/012043

Google Scholar

[10] V. Avrutin, G. Cantwell, J. Zhang, J. J. Song, D. J. Silversmith, and H. Morkoç, "Bulk ZnO: Current status, challenges, and prospects,"Proc. IEEE, vol. 98, no. 7, p.1339–1350, 2010.

DOI: 10.1109/jproc.2010.2040363

Google Scholar

[11] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, "Synthesis, characterization, and applications of ZnO nanowires,"J. Nanomater., vol. 2012, 2012.

Google Scholar

[12] M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, "Synthesis of graphene,"Int. Nano Lett., vol. 6, no. 2, p.65–83, 2016.

DOI: 10.1007/s40089-015-0176-1

Google Scholar

[13] A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, "Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,"Nano Mater. Sci., vol. 1, no. 1, p.31–47, 2019.

DOI: 10.1016/j.nanoms.2019.02.004

Google Scholar

[14] Y. Cui, S. I. Kundalwal, and S. Kumar, "Gas barrier performance of graphene/polymer nanocomposites,"Carbon N. Y., vol. 98, p.313–333, 2016.

DOI: 10.1016/j.carbon.2015.11.018

Google Scholar

[15] M. Xiao, L. Sun, J. Liu, Y. Li, and K. Gong, "Synthesis and properties of polystyrene / graphite nanocomposites,"vol. 43, p.2245–2248, 2002.

DOI: 10.1016/s0032-3861(02)00022-8

Google Scholar

[16] S. Pei and H. M. Cheng, "The reduction of graphene oxide" Carbon N. Y., vol. 50, no. 9, p.3210–3228, 2012.

Google Scholar

[17] B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers,"J. Appl. Polym. Sci., vol. 131, no. 1, p.1–23, 2014.

Google Scholar

[18] D. Nezaki, M. Yasuda, T. Yasui, and M. Takata, "Selective area growth of ZnO crystals by electric current heating,"Solid State Ionics, vol. 172, no. 1-4 SPEC. ISS., p.353–355, 2004.

DOI: 10.1016/j.ssi.2004.02.069

Google Scholar

[19] A.G.E. Sutjipto, Y.P. Asmara, M.A. Jusoh: Behavior of MgO Based Ceramics under Electron Irradiation. Procedia Engineering (Elsevier), Vol. 170, pp.88-92, 2017.

DOI: 10.1016/j.proeng.2017.03.017

Google Scholar

[20] A.G.E. Sutjipto, M. Takata: The use of SEM to investigate the effect of an electron beam on the optically-visible flashover treeing of MgO ceramic. Journal of Materials Science, Springer, 42, pp.6036-6040, 2007.

DOI: 10.1007/s10853-006-1094-4

Google Scholar

[21] Razi, F. Azreen, A.G.E. Sutjipto, A.S. Mohamad: Development of Cu-SiC composite for electrical discharge machining electrode using powder metallurgy technique. Advanced Materials Research, 576. pp.203-207, 2012.

DOI: 10.4028/www.scientific.net/amr.576.203

Google Scholar

[22] A.G.E. Sutjipto, T. Okamoto, M. Takata: Appearance of Flashover Treeing on Polycrystal-line Magnesia Surface. Key Engineering Materials, 181-182, p.231, 2000.

DOI: 10.4028/www.scientific.net/kem.181-182.231

Google Scholar

[23] A.R.F. Azreen, A.G.E. Sutjipto, E.Y.T. Adesta: Fabrication of CuSiC Composite by Powder Metallurgy Route. Advanced Materials Research, 264-265, pp.748-753, 2011.

DOI: 10.4028/www.scientific.net/amr.264-265.748

Google Scholar

[24] A.G.E. Sutjipto: The Effect of CaO Addition on the Microstructural. Mechanical and Dielectric Properties of Pure MgO Ceramic, Key Engineering Materials, 345-346, p.1609, 2007.

DOI: 10.4028/www.scientific.net/kem.345-346.1609

Google Scholar

[25] A.G.E. Sutjipto, T. Okamoto, M. Takata, Flashover Treeing of Magnesia Surface under Electron Beam Bombardment in Vacuum. Transaction of the Materials Research Society of Japan, 25(1), p.512, 2000.

DOI: 10.4028/www.scientific.net/kem.181-182.231

Google Scholar

[26] Jufriadi, A.G.E. Sutjipto, R. Othman, R. Muhida: Discharge, microstructural and mechanical properties of ZrO2 addition on MgO for plasma display panel materials. Materials Research Innovations 13 (3), pp.149-152, 2009.

DOI: 10.1179/143307509x437473

Google Scholar

[27] A.G.E. Sutjipto, R. Muhida, M.Takata: An SEM Flashover: Technique to Characterize Wide Band Gap Insulators. Proceeding of International Conference on Property and Dielectric Materials 2006, Denpasar, Bali, pp.216-219, 2006. ISBN: 1-4244-0189-5. IEEE Publisher.

DOI: 10.1109/icpadm.2006.284156

Google Scholar

[28] N. S. Murthy, Scattering techniques for structural analysis of biomaterials. Woodhead Publishing Limited, 2012.

Google Scholar

[29] S.J. Kim, D.K. Kim, and D.H. Kang, "Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate foodborne pathogens and pasteurize sliced cheese,"Applied and Environmental Microbiology, vol. 82, no. 1. p.11–17, 2016.

DOI: 10.1128/aem.02092-15

Google Scholar