Characterization and Properties of ZnO:Nd3+ Nanomaterial Synthesized by Chemical Synthesis Method

Article Preview

Abstract:

Nd3+ ion-doped ZnO nanomaterial was prepared using chemical synthesis method and its fluorescence spectra have been investigated at room temperature. From SEM images of the synthesized ZnO: Nd3+ nanoparticles it is observed that an increase in concentration of Nd3+ ions leading to the decrease in the particle size. Nearly hexagonal shapes for the dark spots in the SAED images indicate that the ZnO nanoparticles are almost hexagonal. The oscillator strengths leading to 4f ↔ 4f transitions are characterized by different Judd-Ofelt intensity parameters Ωλ (λ = 2, 4 and 6). These Ωλ parameters along with the fluorescence data and various radiative properties viz., spontaneous emission probability (A), radiative life time (t), fluorescence branching ratio (b) and stimulated emission cross-section (sp) were evaluated and compared with the reported values. The values of these parameters indicate that the observed transitions 4F3/24I11/2, 4F3/24I13/2 and 4F3/24I15/2 can be considered to be good laser transitions in the near infrared region for different optoelectronic and spintronic uses.

You might also be interested in these eBooks

Info:

Pages:

1-13

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Li, L. Zhou, H. Zhang, Investigation progresses of rare earth complexes as emitters or sensitizers in organic light-emitting diodes, Light Sci Appl., 11 (2022) 177.

DOI: 10.1038/s41377-022-00866-w

Google Scholar

[2] L. U. Khan, Z. U. Khan, Rare Earth Luminescence: Electronic Spectroscopy and Applications. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. (2018) 345-404.

DOI: 10.1007/978-3-319-92955-2_10

Google Scholar

[3] A. M. Konstantinidis, E. A. Lalla, G. Lopez-Reyes, U. R. Rodríguez-Mendoza, E.A. Lymer, J. Freemantle, M. G. Daly, Statistical learning for the estimation of Judd-Ofelt parameters: A case study of Er3+: Doped tellurite glasses, Journal of Luminescence, 235 (2021) 118020.

DOI: 10.1016/j.jlumin.2021.118020

Google Scholar

[4] S. Shukla, D. K. Sharma, A review on rare earth (Ce and Er)-doped zinc oxide nanostructures, Materials Today: Proceedings, 34(3) (2021) 793-801.

DOI: 10.1016/j.matpr.2020.05.264

Google Scholar

[5] S. Kumar, P. D. Sahare, Nd-doped ZnO as a multifunctional nanomaterial, Journal of Rare Earths. 30 (2012) 761-768.

DOI: 10.1016/s1002-0721(12)60126-4

Google Scholar

[6] J. P. Singh, S. Pal, Y. K. Sharma, A. Nag, Nd-doped CdS nano-particles: Optical band gap and Urbach energy investigations, Journal of Optics, 2024.

DOI: 10.1007/s12596-024-01746-9

Google Scholar

[7] J. Urban, S. K. Haram, S. W. Gosavi, S. K. Kulkarni, Synthesis and analysis of ZnO and CdSe nanoparticles, Pramana. 65 (2005) 615-620.

DOI: 10.1007/bf03010449

Google Scholar

[8] U. Koch, A. Fojtik, H. Weller, A. Englein, Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects, Chem. Phys. Lett. 122 (1985) 507-510.

DOI: 10.1016/0009-2614(85)87255-9

Google Scholar

[9] S. Pal, Y. K. Sharma, Spectral, Structural and Characterization of Neodymium Ions Doped Zinc Oxide Nanomaterial, American Journal of Nanoscience. 7 (2021) 49-53.

Google Scholar

[10] K. S. Shukla, E. S. Agorku, H. Mittal, A. K. Mishra, Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors, Chemical Papers. 68 (2014) 217-222.

DOI: 10.2478/s11696-013-0442-5

Google Scholar

[11] B. J. Chen, X. W. Sun, C. X. Xu, B. K. Tay, Growth and characterization of zinc oxide nano/micro-fibers by thermal chemical reactions and vapor transport deposition in air, Physica E: Low-dimensional Systems and Nanostructures. 21 (2004) 103-107.

DOI: 10.1016/j.physe.2003.08.077

Google Scholar

[12] Y. K. Sharma, J. P. Singh, S. Pal, A. Nag, Fluorescence Study of Pr3+ doped CdS nanoparticles and its Applications in Sensors and Detectors, Journal of Fluorescence. 34 (2024) 915-923.

DOI: 10.1007/s10895-023-03325-w

Google Scholar

[13] R. R. Jacobs, M. J. Weber, Dependence of the 4F3/2 → 4I11/2 Induced-Emission Cross Section for Nd3+ on Glass Composition, IEEE J. Quantum Electron. 12 (1976) 102.

Google Scholar

[14] P. X. Gao, Z. L. Wang, Nanopropeller arrays of zinc oxide, Appl. Phys. Lett. 84 (2004) 2883-2885.

DOI: 10.1063/1.1702137

Google Scholar

[15] S. Boruah, S. Mustafiza, D. Saikia, J. H. Saikia, P. P. Saikia, K. M. Baruah, Synthesis of ZnO Nanoparticles from Zinc Formate and Their Optical Properties, American Chemical Science Journal. 11 (2016) 1-10.

DOI: 10.9734/acsj/2016/22660

Google Scholar

[16] E. A. Lalla, M. Konstantinidis, I. De Souza, M. G. Daly, I. R. Martín, V. Lavín, U. R. Rodríguez-Mendoza, Judd-Ofelt parameters of RE3+-doped fluorotellurite glass (RE3+= Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, and Tm3+), Journal of Alloys and Compounds. 845 (2020) 156028.

DOI: 10.1016/j.jallcom.2020.156028

Google Scholar

[17] B. R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev. 127 (1962) 750.

DOI: 10.1103/physrev.127.750

Google Scholar

[18] G. S. Ofelt, Intensities of Crystal Spectra of Rare‐Earth Ions, J. Chem. Phys. 37 (1962) 511-520.

DOI: 10.1063/1.1701366

Google Scholar

[19] P. Goyal, Y K. Sharma, S. Pal, U. C. Bind, Shu-Chi Huang, Shyan-Lung Chang, The effect of SiO2 Content on structural, physical and spectroscopic properties of Er3+doped B2O3-SiO2-Na2O-PbO-ZnO Glass system, J. Non-cryst Solids. 463 (2017) 118-127.

DOI: 10.1016/j.jnoncrysol.2017.03.009

Google Scholar

[20] W. Luo, J. Liao, R. Li, X. Chen, Determination of Judd-Ofelt Intensity Parameters from the Excitation Spectra for Rare-Earth Doped Luminescent Materials, Physical chemistry chemical physics, 12 (13) (2010) 3276-3282.

DOI: 10.1039/b921581f

Google Scholar

[21] P. Psuja, D. Hreniak, W. Strek, Rare-Earth Doped Nanocrystalline Phosphors for Field Emission Displays, Journal of Nanomaterials. (2007).

DOI: 10.1155/2007/81350

Google Scholar

[22] K. Sahu, A. Ali, A. K. Kar, Altering the Photoluminescence Emission Quenching and Energy Transfer for the Photocatalytic Behaviour of ZnO Nanostructures, ECS Journal of Solid State Science and Technology. 11 (2022) 086003.

DOI: 10.1149/2162-8777/ac8ba7

Google Scholar

[23] N. Joudeh, D. Linke, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists, J Nanobiotechnol. 20 (2022) 262.

DOI: 10.1186/s12951-022-01477-8

Google Scholar

[24] M. Blume, A. J. Freemen, R. E. Watson, Theory of Spin-Orbit Coupling in Atoms. III, Physical Review A, 134 (1964) A320.

DOI: 10.1103/physrev.134.a320

Google Scholar

[25] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, in: H. M. Crosswhite, H. Crosswhite (Eds.), Interscience Publishers, New York, 1968.

Google Scholar

[26] W. F. Krupke, Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG, J. Quantum Electron. 7 (1971) 153.

Google Scholar

[27] W. F. Krupke, Induced Emission Cross Sections in Neodymium Laser Glasses, IEEE J. Quantum Electron. 10 (1974) 450-457.

DOI: 10.1109/jqe.1974.1068162

Google Scholar

[28] R. Balda, J. Fernandez, A. Mendioroz, J. L. Adams, B. Boulard, Temperature-dependent concentration quenching of Nd3+ fluorescence in fluoride glasses, J. Phys.: Condens. Matter. 6 (1994) 913.

DOI: 10.1088/0953-8984/6/4/011

Google Scholar

[29] B. Denker, P. Fjodorow, M. Frolov, B. Galagan, V. Koltashev, V. Plotnichenko, M. Sukhanov, S. Sverchkov, A. Velmuzhov, Rare-Earth-Doped Selenide Glasses as Laser Materials for the 5–6 μm Spectral Range, Photonics. 10 (2023) 1323.

DOI: 10.3390/photonics10121323

Google Scholar

[30] D. Sharma, J. Rajput, B. S. Kaith, M. Kaur, S. Sharma, Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties, Thin Solid films. 519 (2010) 1224.

DOI: 10.1016/j.tsf.2010.08.073

Google Scholar