­Two-Stage Hydrothermal Synthesis of TiO2 Nanotubes with Variations of TiO2/NaOH Molar Ratio

Article Preview

Abstract:

TiO2 nanomaterial is a semiconductor material that exhibits promising photocatalysis activity. TiO2 nanomaterials can be converted into several forms, including TiO2 nanotubes, which have a larger surface area and more applications. In this study, TiO2 nanotubes were synthesized hydrothermally using TiO2 micro powder precursors. The synthesis involved two hydrothermal stages: the first to synthesize TiO2 nanoparticles from TiO2 micro powder precursors, and the second to synthesize TiO2 nanotubes from TiO2 nanoparticle precursors. TiO2 micro powder was added to the synthesis of TiO2 nanoparticles by hydrothermal at mole ratios of TiO2/NaOH of 0.01, 0.025, and 0.04, respectively. The TiO2 nanoparticles obtained exhibit a morphology in the form of short fibers, with particle sizes increasing as the mole ratios are added. Furthermore, they possess an anatase crystal structure at all mole ratios of TiO2/NaOH. Subsequently, the TiO2 nanoparticles are calcined at 450°C. The results of the TiO2 nanoparticle calcination show that the morphology is in the form of short fibers, which are smaller than those of the uncalcinated sample. The calcinated sample also has larger particle sizes and an anatase crystal structure, compared to the uncalcinated sample. The TiO2 nanotubes obtained exhibit an elongated tube morphology with outer diameters ranging from 3.93 to 11.44 nm, inner diameters ranging from 2.5 to 4.25 nm, and a wall thickness of 1.09 to 3.4 nm. The surface area of the TiO2 nanotubes is 256.744 m2/g.

You might also be interested in these eBooks

Info:

Pages:

15-24

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Gomathi Thanga Keerthana, T. Solaiyammal, S. Muniyappan, and P. Murugakoothan, "Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents," Mater. Lett., vol. 220, p.20–23, 2018.

DOI: 10.1016/j.matlet.2018.02.119

Google Scholar

[2] H. Abdelouahab Reddam, R. Elmail, S. C. Lloria, G. Monrós Tomás, Z. A. Reddam, and F. Coloma-Pascual, "Synthesis of Fe, Mn and Cu modified TiO2 photocatalysts for photodegradation of Orange II," Bol. la Soc. Esp. Ceram. y Vidr., vol. 59, no. 4, p.138–148, 2020.

DOI: 10.1016/j.bsecv.2019.09.005

Google Scholar

[3] P. Van Viet, B. T. Phan, L. Van Hieu, and C. M. Thi, "The effect of acid treatment and reactive temperature on the formation of TiO2 nanotubes," J. Nanosci. Nanotechnol., vol. 15, no. 7, p.5202–5206, 2015.

DOI: 10.1166/jnn.2015.10025

Google Scholar

[4] N. Liu, X. Chen, J. Zhang, and J. W. Schwank, "A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications," Catal. Today, vol. 225, p.34–51, 2014.

DOI: 10.1016/j.cattod.2013.10.090

Google Scholar

[5] F. Sallem, R. Chassagnon, A. Megriche, M. El Maaoui, and N. Millot, "Effect of mechanical stirring and temperature on dynamic hydrothermal synthesis of titanate nanotubes," J. Alloys Compd., vol. 722, p.785–796, 2017.

DOI: 10.1016/j.jallcom.2017.06.172

Google Scholar

[6] A. D. Rosanti, A. R. K. Wardani, and H. A. Anggraeni, "Pengaruh Suhu Kalsinasi terhadap Karakteristik dan Aktivitas Fotokatalis N/TiO2 pada Penjernihan Limbah Batik Tenun Ikat Kediri," Indones. E-Journal Appl. Chem., vol. 8, no. 1, p.26–33, 2020, https://jurnal.harianregional.com/index.php/cakra/article/view/62801.

DOI: 10.20473/jkr.v5i1.18169

Google Scholar

[7] H. Chen, D. Chen, L. Bai, and K. Shu, "Hydrothermal synthesis and electrochemical properties of TiO2 nanotubes as an anode material for lithium ion batteries," Int. J. Electrochem. Sci., vol. 13, no. 2, p.2118–2125, 2018.

DOI: 10.20964/2018.02.75

Google Scholar

[8] A. Castro-Beltrán et al., "Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and methylene blue degradation," Optik (Stuttg)., vol. 157, p.890–894, 2018.

DOI: 10.1016/j.ijleo.2017.11.185

Google Scholar

[9] M. H. Razali, M. N. Ahmad-Fauzi, A. R. Mohamed, and S. Sreekantan, "Physicalproperties study of Tio2 nanoparticle synthesis via hydrothermal method using TiO2 microparticles as precursor," Adv. Mater. Res., vol. 772, p.365–370, 2013.

DOI: 10.4028/www.scientific.net/AMR.772.365

Google Scholar

[10] R. Nagarajan, "Nanoparticles: Building blocks for nanotechnology," ACS Symp. Ser., vol. 996, p.2–14, 2008.

DOI: 10.1021/bk-2008-0996.ch001

Google Scholar

[11] A. Gaber, M. A. Abdel- Rahim, A. Y. Abdel-Latief, and M. N. Abdel-Salam, "Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method," Int. J. Electrochem. Sci., vol. 9, no. 1, p.81–95, 2014.

DOI: 10.1016/s1452-3981(23)07699-x

Google Scholar

[12] H. Liu, G. Liu, and Q. Zhou, "Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity," J. Solid State Chem., vol. 182, no. 12, p.3238–3242, 2009.

DOI: 10.1016/j.jssc.2009.09.016

Google Scholar

[13] C. K. Lee, C. C. Wang, M. Du Lyu, L. C. Juang, S. S. Liu, and S. H. Hung, "Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates," J. Colloid Interface Sci., vol. 316, no. 2, p.562–569, 2007.

DOI: 10.1016/j.jcis.2007.08.008

Google Scholar

[14] J. Huang, Y. Cao, Z. Deng, and H. Tong, "Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment," J. Solid State Chem., vol. 184, no. 3, p.712–719, 2011.

DOI: 10.1016/j.jssc.2011.01.023

Google Scholar

[15] D. L. Morgan, "Alkaline Hydrothermal Treatment of Titanate," Queensl. Univ. Techology, no. August, p.172, 2010.

Google Scholar