Bamboo in Composite Materials: Applications, Advantages and Processing

Article Preview

Abstract:

Bamboo has emerged as a sustainable and high-performance reinforcement material in composite structures due to its exceptional mechanical properties, rapid renewability, and environmental benefits. Despite increasing use, several challenges—including inconsistent fiber-matrix adhesion, moisture sensitivity, and lack of performance standardization—still limit its full-scale adoption. This article addresses these knowledge gaps by reviewing recent advances in bamboo fiber-reinforced composites (BFRCs), with emphasis on their applications in construction, automotive, aerospace, and biomedical engineering. The advantages of bamboo over synthetic fibers (e.g., glass/carbon fibers) include high specific strength (350 MPa), low density (0.8–1.4 g/cm³), biodegradability, and carbon sequestration potential. Critical processing techniques—such as alkali treatment, compression molding, and 3D printing—are analyzed alongside challenges like fiber-matrix adhesion and moisture absorption. With a growing emphasis on circular economy principles, BFRCs are poised to revolutionize sustainable material design.

You might also be interested in these eBooks

Info:

Pages:

43-52

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liese, W., and Köhl, M. (2015). Bamboo: The Plant and its Uses. Springer.

DOI: 10.1007/978-3-319-14133-6

Google Scholar

[2] INBAR (2022). Bamboo and Rattan: Facts and Figures. International Bamboo and Rattan Organisation. https://www.inbar.int/resources/inbar_publications/inbar-statistical-factsheet/.

DOI: 10.54113/j.sust.2022.000015

Google Scholar

[3] Osorio, L., Trujillo, E., Van Vuure, A. W., and Verpoest, I. (2011). Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. Journal of Reinforced Plastics and Composites, 30(5), 396–408.

DOI: 10.1177/0731684410397683

Google Scholar

[4] Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637–649.

DOI: 10.1016/j.cemconcomp.2004.06.002

Google Scholar

[5] Sharma, B., Gatóo, A., Bock, M., and Ramage, M. (2015). Engineered bamboo for structural applications. Construction and Building Materials, 81, 66–73.

DOI: 10.1016/j.conbuildmat.2015.01.077

Google Scholar

[6] Njuguna, J., Pielichowski, K., and Fan, J. (2011). Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer.

DOI: 10.1007/978-3-642-17370-7_16

Google Scholar

[7] Scurlock, J. M. O., Dayton, D. C., and Hames, B. (2000). Bamboo: An overlooked biomass resource? Biomass and Bioenergy, 19(4), 229–244.

DOI: 10.1016/S0961-9534(00)00038-6

Google Scholar

[8] Xu, M., Ma, L., Li, Z., and He, Z. (2013). Chemical composition and in vitro digestibility of bamboo fractions from different species. Scientific World Journal, 2013.

Google Scholar

[9] Chauhan, V., Kärki, T., and Varis, J. (2022). Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 35(8), 1169-1209.

DOI: 10.1177/0892705719889095

Google Scholar

[10] Kalia, S., Kaith, B. S., and Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites. Polymer Engineering and Science, 49(7), 1253–1272.

DOI: 10.1002/pen.21328

Google Scholar

[11] Nurul Fazita, M. R., Jayaraman, K., Bhattacharyya, D., Mohamad Haafiz, M. K., Saurabh, C. K., Hussin, M. H., and HPS, A. K. (2016). Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—A review. Materials, 9(6), 435.

DOI: 10.3390/ma9060435

Google Scholar

[12] Randhawa, A., Dutta, S. D., Ganguly, K., Patil, T. V., Patel, D. K., and Lim, K. T. (2022). A review of properties of nanocellulose, its synthesis, and potential in biomedical applications. Applied Sciences, 12(14), 7090.

DOI: 10.3390/app12147090

Google Scholar

[13] Jiang, L., Li, Y., Xiong, C., and Su, S. (2017). Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering. ACS Applied Materials and Interfaces, 9(5), 4890–4897.

DOI: 10.1021/acsami.6b15032

Google Scholar

[14] Bhagabati, P., Das, D., and Katiyar, V. (2021). Bamboo-flour-filled cost-effective poly(ε-caprolactone) biocomposites: a potential contender for flexible cryo-packaging applications. Materials Advances, 2(1), 280–291.

DOI: 10.1039/D0MA00517G

Google Scholar

[15] Shu, B., Xiao, Z., Hong, L., Zhang, S., Li, C., Fu, N., & Lu, X. (2020). Review on the application of bamboo-based materials in construction engineering. Journal of Renewable Materials, 8(10), 1215-1242.

DOI: 10.32604/jrm.2020.011263

Google Scholar

[16] Bakar, B. F. A., Salim, S., Osman, S., Jaafar, W. N. R. W., & Othman, N. A. (2025). Biodegradation study on bamboo-based polymer composites. Bamboo-Based Polymer Composites, 177-204.

DOI: 10.1016/b978-0-443-33445-0.00007-9

Google Scholar

[17] Khalil, H. P. S. A., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials & Design, 42, 353–368.

DOI: 10.1016/j.matdes.2012.06.015

Google Scholar

[18] Kushwaha, P. K., and Kumar, R. (2010). Studies on water absorption of bamboo-epoxy composites: Effect of silane treatment of mercerized bamboo. Journal of Applied Polymer Science, 115(3), 1846–1852.

DOI: 10.1002/app.31317

Google Scholar

[19] Shah, A. U. M., Sultan, M. T. H., Jawaid, M., Cardona, F., and Abu Talib, A. R. (2016). A Review on the Tensile Properties of Bamboo Fiber Reinforced Polymer Composites. BioResources, 11(4), 10654–10676.

DOI: 10.15376/biores.11.4.shah

Google Scholar

[20] Bledzki, A. K., Faruk, O., and Sperber, V. E. (2002). Natural and wood fibre reinforcement in polymers. Rapra Review Reports, 13(8), 1–32.

Google Scholar

[21] Gu, S., Lourenço, A., Wei, X., et al. (2024). Structural and Chemical Analysis of Three Regions of Bamboo (Phyllostachys edulis). Materials, 17(20), 5027.

DOI: 10.3390/ma17205027

Google Scholar

[22] Lee, S. H., and Wang, S. (2006). Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 37(1), 80–91.

DOI: 10.1016/j.compositesa.2005.04.015

Google Scholar

[23] Norizan, M. N., Moklis, M. H., Alias, A. H., Rushdan, A. I., Norrrahim, M. N. F., Abdan, K., & Abdullah, N. (2021). Treatments of Natural Fibre as Reinforcement in Polymer Composites-Short Review. Funct. Compos. Struct, 3(2), 024002.

DOI: 10.1088/2631-6331/abff36

Google Scholar

[24] Daramola, O. M., Apeh, C. E., Basiru, J. O., Onukwulu, E. C., & Paul, P. O. (2025). Sustainable packaging operations: Balancing cost, functionality, and environmental concerns. International Journal of Social Science Exceptional Research, 4(1), 79-97.

DOI: 10.54660/ijsser.2025.4.1.79-97

Google Scholar

[25] Petrenko, L., Puzko, S., Lavrenenko, V., & Gernego, I. (2024). Fostering sustainable packaging industry: Global trends and challenges. European Journal of Sustainable Development, 13(2), 63-63.

DOI: 10.14207/ejsd.2024.v13n2p63

Google Scholar

[26] Amjad, A.I., 2024. Bamboo fibre: A sustainable solution for textile manufacturing. Advances in Bamboo Science 7, 100088.

DOI: 10.1016/j.bamboo.2024.100088

Google Scholar

[27] Xie, J., Qi, J., Hu, T., De Hoop, C. F., Hse, C. Y., & Shupe, T. F. (2016). Effect of fabricated density and bamboo species on physical–mechanical properties of bamboo fiber bundle reinforced composites. Journal of materials science, 51(16), 7480-7490.

DOI: 10.1007/s10853-016-0024-3

Google Scholar