[1]
H. Aprida, S. Hidayat, N. Syakir, R. Siregar, and Fitrilawati, "Electrical and Electrochemical Properties of Reduced Graphene Oxide Film for Secondary Battery Electrode," J. Phys.: Conf. Ser., vol. 1080, p.012032, Aug. 2018.
DOI: 10.1088/1742-6596/1080/1/012032
Google Scholar
[2]
Y. Mussa, F. Ahmed, M. Arsalan, and E. Alsharaeh, "Two Dimensional (2D) Reduced Graphene Oxide (RGO)/Hexagonal Boron Nitride (h-BN) Based Nanocomposites as Anodes for High Temperature Rechargeable Lithium-Ion Batteries," Sci Rep, vol. 10, no. 1, p.1882, Feb. 2020.
DOI: 10.1038/s41598-020-58439-z
Google Scholar
[3]
X. Wang et al., "Improved Electrochemical Performance Based on Nanostructured SnS2@CoS2–rGO Composite Anode for Sodium-Ion Batteries," Nano-Micro Lett., vol. 10, no. 3, p.46, Jul. 2018.
DOI: 10.1007/s40820-018-0200-x
Google Scholar
[4]
A. Pramanik, S. Chattopadhyay, G. De, and S. Mahanty, "Design of Cuboidal FeNi2S4-rGO-MWCNTs Composite for Lithium-Ion Battery Anode Showing Excellent Half and Full Cell Performances," Batteries, vol. 8, no. 12, p.261, Nov. 2022.
DOI: 10.3390/batteries8120261
Google Scholar
[5]
B. Denis Louis Campéon, Y. Yoshikawa, T. Teranishi, and Y. Nishina, "Sophisticated rGO Synthesis and Pre-Lithiation Unlocking Full-Cell Lithium-Ion Battery High-Rate Performances," Electrochimica Acta, vol. 363, p.137257, Dec. 2020.
DOI: 10.1016/j.electacta.2020.137257
Google Scholar
[6]
J. Ginting, E. Yulianti, and Sudaryanto, "Sintesis Li2TiO3 sebagai Bahan Anoda Baterai Li-ion degan Metode Reaksi Padatan," J. Sains Mater. Indones., vol. 15, no. 4, p.196–200, 2014.
Google Scholar
[7]
A. F. Ramdja, A. Kurniawan, and S. Ahmad, "Manufacture of Activated Carbon from Coalite and its Application in Liquid Waste Treatment of Jumputan Fabric Industry," vol. 15, no. 4, 2008.
Google Scholar
[8]
A. Saleh, F. A. Amhadin, and I. Novianty, "Synthesis of Reduced Graphene Oxide and Zinc Oxide Composite from Candlenut Shell Charcoal (Aleuritas Moluccana)," ekw, vol. 8, no. 1, p.1, Jun. 2022.
DOI: 10.22373/ekw.v8i1.9405
Google Scholar
[9]
Inamuddin and A. M. Asiri, Eds., "Applications of Nanotechnology for Green Synthesis. in Nanotechnology in the Life Sciences". Cham: Springer International Publishing, 2020.
DOI: 10.1007/978-3-030-44176-0
Google Scholar
[10]
E. Jaafar, M. Kashif, S. K. Sahari, and Z. Ngaini, "Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)," MSF, vol. 917, p.112–116, Mar. 2018.
DOI: 10.4028/www.scientific.net/MSF.917.112
Google Scholar
[11]
A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S. H. M. Jafri, and H. Li, "Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications," Materials, vol. 15, no. 3, p.1012, Jan. 2022.
DOI: 10.3390/ma15031012
Google Scholar
[12]
S. Rani and M. Tomar, "Reduced Graphene Oxide (rGO) and its Composites: Synthesis and Applications".
Google Scholar
[13]
N.I. Ciptasari et al., "Synthesis of Nanocomposites Reduced Graphene Oxide-Silver Nanoparticles Prepared by Hydrothermal Technique Using Sodium Borohydride as a Reductor for Photocatalytic Degradation of Pb Ions in Aqueous Solution," EEJET, vol. 6, no. 5 (120), p.54–62, Dec. 2022.
DOI: 10.15587/1729-4061.2022.269844
Google Scholar
[14]
N. Bano, I. Hussain, A. M. EL-Naggar, and A. A. Albassam, "Reduced Graphene Oxide Nanocomposites for Optoelectronics Applications," Appl. Phys. A, vol. 125, no. 3, p.215, Mar. 2019.
DOI: 10.1007/s00339-019-2518-8
Google Scholar
[15]
L. Buasuwan, V. Niyomnaitham, and A. Tandaechanurat, "Reduced Graphene Oxide Using an Environmentally Friendly Banana Extracts," MRS Advances, vol. 4, no. 38–39, p.2143–2151, Aug. 2019.
DOI: 10.1557/adv.2019.280
Google Scholar
[16]
A. T. Habte and D. W. Ayele, "Synthesis and Characterization of Reduced Graphene Oxide (rGO) Started from Graphene Oxide (GO) Using the Tour Method with Different Parameters," Advances in Materials Science and Engineering, vol. 2019, p.1–9, Aug. 2019.
DOI: 10.1155/2019/5058163
Google Scholar
[17]
A. Sjahriza and S. Herlambang, "Synthesis of Graphene Oxide from Coconut Shell Charcoal for Antibacterial and Antioxidant Applications," AK, vol. 8, no. 2, p.51–58, Dec. 2021.
DOI: 10.15575/ak.v8i2.13473
Google Scholar
[18]
J. C. Silva Filho, E. C. Venancio, S. C. Silva, H. Takiishi, L. G. Martinez, and R. A. Antunes, "A Thermal Method for Obtention of 2 to 3 Reduced Graphene Oxide Layers from Graphene Oxide," SN Appl. Sci., vol. 2, no. 8, p.1450, Aug. 2020.
DOI: 10.1007/s42452-020-03241-9
Google Scholar
[19]
N. Cao and Y. Zhang, "Study of Reduced Graphene Oxide Preparation by Hummers' Method and Related Characterization," Journal of Nanomaterials, vol. 2015, p.2–2, Jan 2015
DOI: 10.1155/2015/168125
Google Scholar
[20]
M. Strankowski, D. Włodarczyk, Ł. Piszczyk, and J. Strankowska, "Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies," Journal of Spectroscopy, vol. 2016, p.1–6, Aug 2016.
DOI: 10.1155/2016/7520741
Google Scholar
[21]
S. Abdolhosseinzadeh, H. Asgharzadeh, dan H. Seop Kim, "Fast and Fully-Scalable Synthesis of Reduced Graphene Oxide," Scientific Reports, vol. 5, no. 1, p.10160, May 2015
DOI: 10.1038/srep10160
Google Scholar
[22]
D. Chen, H. Feng, and J. Li, "Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications," Chem. Rev., vol. 112, no. 11, p.6027–6053, Nov. 2012.
DOI: 10.1021/cr300115g
Google Scholar
[23]
M. S. Khan, R. Yadav, R. Vyas, A. Sharma, M. K. Banerjee, and K. Sachdev, "Synthesis and Evaluation of Reduced Graphene Oxide for Supercapacitor Application," Mater. Today Proc., vol. 30, no. xxxx, p.153–156, 2020.
DOI: 10.1016/j.matpr.2020.05.403
Google Scholar
[24]
S. C. Rodrigues, M. C. Silva, J. A. Torres, and M. L. Bianchi, "Use of Magnetic Activated Carbon in a Solid Phase Extraction Procedure for Analysis of 2,4-dichlorophenol in Water Samples," Water Air Soil Pollut, vol. 231, no. 6, p.294, Jun. 2020.
DOI: 10.1007/s11270-020-04610-1
Google Scholar
[25]
N. Kristiyanti and W. S. B. Dwandaru, "Sintesis dan Karakterisasi Reduced Graphene Oxide Berbahan Dasar Karbon Baterai NMC Menggunakan Metode Audiosonikasi".
Google Scholar
[26]
F. Astuti, N. Sari, V. L. Maghfirohtuzzoimah, R. Asih, M. A. Baqiya, and D. Darminto, "Study of the Formation of Amorphous Carbon and rGO-like Phases from Palmyra Sugar by Variation of Calcination Temperature," JFA, vol. 16, no. 2, p.91, Jun. 2020.
DOI: 10.12962/j24604682.v16i2.6706
Google Scholar
[27]
B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, and I. Visoly-Fisher, "Role of Oxygen Functional Groups in Reduced Graphene Oxide for Lubrication," Sci Rep, vol. 7, no. 1, p.45030, Mar. 2017.
DOI: 10.1038/srep45030
Google Scholar
[28]
B. A. Gaweł, A. Ulvensøen, K. Łukaszuk, B. Arstad, A. M. F. Muggerud, and A. Erbe, "Structural Evolution of Water and Hydroxyl Groups during Thermal, Mechanical and Chemical Treatment of High Purity Natural Quartz," RSC Adv., vol. 10, no. 48, p.29018–29030, 2020.
DOI: 10.1039/D0RA05798C
Google Scholar
[29]
I. Bagherpour, A. Yaghtin, S. M. Naghib, and F. Molaabasi, "Synthesis and Investigation on Microstructural, Mechanical Features of Mesoporous Hardystonite/Reduced Graphene Oxide Nanocomposite for Medical Applications," Front. Bioeng. Biotechnol., vol. 11, p.1073435, Mar. 2023.
DOI: 10.3389/fbioe.2023.1073435
Google Scholar
[30]
A. Shalaby, D. Nihtianova, P. Markov, A. D. Staneva, R. S. Iordanova, and Y. B. Dimitriev, "Structural Analysis of Reduced Graphene Oxide by Transmission Electron Microscopy".
Google Scholar
[31]
W. Zhu et al., "Structure and Electronic Transport in Graphene Wrinkles," Nano Lett., vol. 12, no. 7, p.3431–3436, Jul. 2012.
DOI: 10.1021/nl300563h
Google Scholar
[32]
V. C. Saha et al., "Synthesis and Characterization of Reduced Graphene Oxide Reinforced Polymer Matrix Composite," IOP Conf. Ser.: Mater. Sci. Eng., vol. 438, p.012008, Oct. 2018.
DOI: 10.1088/1757-899X/438/1/012008
Google Scholar
[33]
W. Ullya and R. Jonuarti, "Effect of Calcination Temperature on Microstructure, Porosity and Hardness of CaO/SiO2 Nanocomposites for Bone Implants".
Google Scholar
[34]
N. A. Ogolo, O. G. Akinboro, J. E. Inam, F. E. Akpokere, and M. O. Onyekonwu, "Effect of Grain Size on Porosity Revisited," in All Days, Lagos, Nigeria: SPE, Aug. 2015, p. SPE-178296-MS.
DOI: 10.2118/178296-MS
Google Scholar
[35]
W. Qu et al., "Effect of Temperature Gradient on the Grain Size Homogeneity of SEED Produced Semi-Solid Slurries by Phase-Field Simulation," Materials, vol. 12, no. 20, p.3309, Oct. 2019.
DOI: 10.3390/ma12203309
Google Scholar
[36]
A. Noor, M. Hamdini, S. Ramadina, and Y. Tiandho, "Dye-Sensitized Solar Cell-Based Photovoltaic Thermal for Ethanol Distillation: A Narrative Review," jgs, vol. 8, no. 2, p.123, Jan. 2021.
DOI: 10.31258/jgs.8.2.123-131
Google Scholar
[37]
S. A. Borghei et al., "Synthesis of Multi-Application Activated Carbon from Oak Seeds by KOH Activation for Methylene Blue Adsorption and Electrochemical Supercapacitor Electrode," Arabian Journal of Chemistry, vol. 14, no. 2, p.102958, Feb. 2021.
DOI: 10.1016/j.arabjc.2020.102958
Google Scholar
[38]
W. S. Arsyad, Y. Pranata, V. I. Variani, I. Usman, L. Aba, and L. Agusu, "Synthesize of rGO from Coal (Sub-Bituminous) as a Counter-Electrode on Dye-Sensitized Solar Cells," J. Phys.: Conf. Ser., vol. 1951, no. 1, p.012005, Jun. 2021.
DOI: 10.1088/1742-6596/1951/1/012005
Google Scholar
[39]
M. Diantoro, I. Istiqomah, Y. Al. Fath, N. Nasikhudin, and W. Meevasana. 2023. Potential of MnO2-Based Composite and Numerous Morphological for Enhancing Supercapacitors Performance. International Journal of Applied Ceramic Technology, 1–22.
DOI: 10.1111/ijac.14377
Google Scholar
[40]
C. C. Lee, F. S. Omar, A. Numan, N. Duraisamy, K. Ramesh, and S. Ramesh, "An Enhanced Performance of Hybrid Supercapacitor Based on Polyaniline-Manganese Phosphate Binary Composite," J Solid State Electrochem, vol. 21, no. 11, p.3205–3213, Nov. 2017.
DOI: 10.1007/s10008-017-3624-1
Google Scholar