Synthesis Second Assembly of Calcium Carbonate Sphere Chains

Article Preview

Abstract:

Using simple and efficient celloidin membrane as basic template, and adding polyglycol reagent as assistant template, the calcium carbonate assembly sphere chains were synthesized. The length of chains was 6-8 µm, and the building block spheres were formed by nanoparticles with about 50 nm in diameter. All the products were characterized by transmission electron microscopy, X-ray powder diffraction, thermogravimetry analysis. The decomposition temperature increased by about 30 °C compared with the separate spheres, which may be caused by the bonding power of the spheres in chains. The products of calcium carbonate chains that kept in alcohol for 90d were found to have second-assembly to novel flower-like structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.C. Meldrum, Calcium carbonate in biomineralisation and biomimetic chemistry, Int. Mater. Rev. 48 (2003) 187-224.

Google Scholar

[2] S. Mann, The chemistry of form, Angew. Chem. Int. Ed. 39 (2000) 3393-3406.

Google Scholar

[3] K. Naka, Y. Tanaka, Y. Chujo, Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: Size control of spherical vaterite particles, Langmuir 18 (2002) 3655-3658.

DOI: 10.1021/la011345d

Google Scholar

[4] D. Shan, M.J. Zhu, H.G. Xue, S. Cosnier, Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles, Biosens. Bioelectron. 22 (2007) 1612-1617.

DOI: 10.1016/j.bios.2006.07.019

Google Scholar

[5] M. Sedlak, M. Antonietti, H. Cölfen, Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals, Macromol. Chem. Phys. 199 (1998) 247-254.

DOI: 10.1002/(sici)1521-3935(19980201)199:2<247::aid-macp247>3.0.co;2-9

Google Scholar

[6] G. Falini, S. Albeck, S. Weiner, L. Addad, Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science 271 (1996) 67-69.

DOI: 10.1126/science.271.5245.67

Google Scholar

[7] A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, G.D. Stucky, D.E. Morse, Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature 381 (1996) 56-59.

DOI: 10.1038/381056a0

Google Scholar

[8] S. Valiyaveettil, D.L. Kaplan, S. Mann, Template-directed synthesis of aragonite under supermolecular hydrogen-bonded Langmuir monolayers, Adv. Mater. 9 (1997), 124-127.

DOI: 10.1002/adma.19970090205

Google Scholar

[9] B.D. Chen, J.J. Cilliers, R.J. Davey, J. Garside, E.T. Woodburn, Templated nucleation in a dynamic environment: Crystallization in foam lamellae.

DOI: 10.1021/ja973069o

Google Scholar

[4] J. Am. Chem. Soc. 120 (1998) 1625-1626.

Google Scholar

[10] E. Dalas, P. Klepetsanis, P.G. Koutsoukos, Overgrowth of calcium carbonate on poly(vinyl chloride-co-vinyl acetate-co-maleic acid), Langmuir 15 (1999) 8322-8327.

DOI: 10.1021/la981366g

Google Scholar

[11] S.M. D'Souza, C. Alexander, S.W. Carr, A.M. Waller, M.J. Whitcombe, E.N. Vulfson, Directed nucleation of calcite at a crystal-imprinted polymer surface, Nature 398 (1999) 312-316.

DOI: 10.1038/18636

Google Scholar

[12] L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003), 959-970.

DOI: 10.1002/adma.200300381

Google Scholar

[13] F. Glaab, M. Kellermeier, W. Kunz, Chiral polymer helices with shape identical to previously reported helical calcium carbonate morphologies, Macromol. Rapid Commun. 28 (2007). 1024-1028.

DOI: 10.1002/marc.200700037

Google Scholar

[14] A. Sugawara, T. Ishii, T. Kato, Self-Organized calcium carbonate with regular surface-relief structures, Angew. Chem. Int. Ed. 42 (2003) 5299-5303.

DOI: 10.1002/anie.200351541

Google Scholar

[15] S.H. Yu, H. Cölfen, J. Hartmann, A. Antonietti, Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers, Adv. Funct. Mater. 12 (2002) 541-545.

DOI: 10.1002/1616-3028(20020805)12:8<541::aid-adfm541>3.0.co;2-3

Google Scholar

[16] M. Takiguchi, K. Igarashi, M. Azuma, H. Ooshima, Flowerlike agglomerates of calcium carbonate crystals formed on an eggshell membrane, Cryst. Growth & Des. 6 (2006) 2754-2757.

DOI: 10.1021/cg0604576

Google Scholar

[17] M. Kuang, D. Wang, M. Gao, J. Hartmann, H. Möhwald, A bio-inspired route to fabricate submicrometer-sized particles with unusual shapes − mineralization of calcium carbonate within hydrogel spheres, Chem. Mater. 17 (2005) 656-660.

DOI: 10.1021/cm0484596

Google Scholar

[18] Z.Y. Tang, N.A. Kovov, One-dimensional assemblies of nanoparticles: preparation, properties, and promise, Adv. Mater. 17 (2005) 951-962.

DOI: 10.1002/adma.200401593

Google Scholar

[19] S.A. Davis, M . Breulmann, K.H. Rhodes, B. Zhang, S. Mann, Template-directed assembly using nanoparticle building blocks: A nanotectonic approach to organized materials, Chem. Mater. 13 (2001), 3218-3226.

DOI: 10.1021/cm011068w

Google Scholar

[20] J.K. Liu, Q.S. Wu, Y.P. Ding, B. Wang, Controlled synthesis of HgS nanocrystals with artificial active membrane as template, Chem. J. Chinese. U. 24 (2003) 2147-2150.

Google Scholar

[21] P. Malkaj, E. Dalas, Calcium carbonate crystallization in the presence of aspartic acid, Cryst. Growth & Des. 4 (2004) 721-723.

DOI: 10.1021/cg030014r

Google Scholar

[22] Y.L. Zhang, J. Zhu, X. Song, X.H. Zhong, Controlling the synthesis of CoO nanocrystals with various morphologies, J. Phys. Chem. C 112 (2008) 5322.

DOI: 10.1021/jp709943x

Google Scholar

[23] Y.H. Ni, X.F. Cao, G.Z. Hu, Z.S. Yang, X.W. Wei, Y.H. Chen, J. Xu, Preparation, conversion, and comparison of the photocatalytic and electrochemical properties of ZnS(en)0. 5, ZnS, and ZnO, Cryst. Growth & Des. 7 (2007) 280-285.

DOI: 10.1021/cg060312z

Google Scholar

[24] X.H. Zhong, Y.Y. Feng, I. Lieberwirth, W. Knoll, Facile synthesis of orphology-controlled platinum nanocrystals, Chem. Mater. 18 (2006) 2468-2471.

DOI: 10.1021/cm060463p

Google Scholar

[25] W. Du, J. Zhu, S. Li, X. Qian, Ultrathin β-In2S3 Nanobelts: Shape-controlled synthesis and optical and photocatalytic properties, Cryst. Growth & Des. 8 (2008) 2130-2136.

DOI: 10.1021/cg7009258

Google Scholar

[26] X. Wang, X. M. Sun, D. P. Yu, B. S . Zou, Y. D. Li, Rare earth compound nanotubes, Adv. Mater. 15 (2003) 1442-1445.

DOI: 10.1002/adma.200305164

Google Scholar