[1]
F.C. Meldrum, Calcium carbonate in biomineralisation and biomimetic chemistry, Int. Mater. Rev. 48 (2003) 187-224.
Google Scholar
[2]
S. Mann, The chemistry of form, Angew. Chem. Int. Ed. 39 (2000) 3393-3406.
Google Scholar
[3]
K. Naka, Y. Tanaka, Y. Chujo, Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: Size control of spherical vaterite particles, Langmuir 18 (2002) 3655-3658.
DOI: 10.1021/la011345d
Google Scholar
[4]
D. Shan, M.J. Zhu, H.G. Xue, S. Cosnier, Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles, Biosens. Bioelectron. 22 (2007) 1612-1617.
DOI: 10.1016/j.bios.2006.07.019
Google Scholar
[5]
M. Sedlak, M. Antonietti, H. Cölfen, Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals, Macromol. Chem. Phys. 199 (1998) 247-254.
DOI: 10.1002/(sici)1521-3935(19980201)199:2<247::aid-macp247>3.0.co;2-9
Google Scholar
[6]
G. Falini, S. Albeck, S. Weiner, L. Addad, Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science 271 (1996) 67-69.
DOI: 10.1126/science.271.5245.67
Google Scholar
[7]
A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, G.D. Stucky, D.E. Morse, Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature 381 (1996) 56-59.
DOI: 10.1038/381056a0
Google Scholar
[8]
S. Valiyaveettil, D.L. Kaplan, S. Mann, Template-directed synthesis of aragonite under supermolecular hydrogen-bonded Langmuir monolayers, Adv. Mater. 9 (1997), 124-127.
DOI: 10.1002/adma.19970090205
Google Scholar
[9]
B.D. Chen, J.J. Cilliers, R.J. Davey, J. Garside, E.T. Woodburn, Templated nucleation in a dynamic environment: Crystallization in foam lamellae.
DOI: 10.1021/ja973069o
Google Scholar
[4]
J. Am. Chem. Soc. 120 (1998) 1625-1626.
Google Scholar
[10]
E. Dalas, P. Klepetsanis, P.G. Koutsoukos, Overgrowth of calcium carbonate on poly(vinyl chloride-co-vinyl acetate-co-maleic acid), Langmuir 15 (1999) 8322-8327.
DOI: 10.1021/la981366g
Google Scholar
[11]
S.M. D'Souza, C. Alexander, S.W. Carr, A.M. Waller, M.J. Whitcombe, E.N. Vulfson, Directed nucleation of calcite at a crystal-imprinted polymer surface, Nature 398 (1999) 312-316.
DOI: 10.1038/18636
Google Scholar
[12]
L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003), 959-970.
DOI: 10.1002/adma.200300381
Google Scholar
[13]
F. Glaab, M. Kellermeier, W. Kunz, Chiral polymer helices with shape identical to previously reported helical calcium carbonate morphologies, Macromol. Rapid Commun. 28 (2007). 1024-1028.
DOI: 10.1002/marc.200700037
Google Scholar
[14]
A. Sugawara, T. Ishii, T. Kato, Self-Organized calcium carbonate with regular surface-relief structures, Angew. Chem. Int. Ed. 42 (2003) 5299-5303.
DOI: 10.1002/anie.200351541
Google Scholar
[15]
S.H. Yu, H. Cölfen, J. Hartmann, A. Antonietti, Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers, Adv. Funct. Mater. 12 (2002) 541-545.
DOI: 10.1002/1616-3028(20020805)12:8<541::aid-adfm541>3.0.co;2-3
Google Scholar
[16]
M. Takiguchi, K. Igarashi, M. Azuma, H. Ooshima, Flowerlike agglomerates of calcium carbonate crystals formed on an eggshell membrane, Cryst. Growth & Des. 6 (2006) 2754-2757.
DOI: 10.1021/cg0604576
Google Scholar
[17]
M. Kuang, D. Wang, M. Gao, J. Hartmann, H. Möhwald, A bio-inspired route to fabricate submicrometer-sized particles with unusual shapes − mineralization of calcium carbonate within hydrogel spheres, Chem. Mater. 17 (2005) 656-660.
DOI: 10.1021/cm0484596
Google Scholar
[18]
Z.Y. Tang, N.A. Kovov, One-dimensional assemblies of nanoparticles: preparation, properties, and promise, Adv. Mater. 17 (2005) 951-962.
DOI: 10.1002/adma.200401593
Google Scholar
[19]
S.A. Davis, M . Breulmann, K.H. Rhodes, B. Zhang, S. Mann, Template-directed assembly using nanoparticle building blocks: A nanotectonic approach to organized materials, Chem. Mater. 13 (2001), 3218-3226.
DOI: 10.1021/cm011068w
Google Scholar
[20]
J.K. Liu, Q.S. Wu, Y.P. Ding, B. Wang, Controlled synthesis of HgS nanocrystals with artificial active membrane as template, Chem. J. Chinese. U. 24 (2003) 2147-2150.
Google Scholar
[21]
P. Malkaj, E. Dalas, Calcium carbonate crystallization in the presence of aspartic acid, Cryst. Growth & Des. 4 (2004) 721-723.
DOI: 10.1021/cg030014r
Google Scholar
[22]
Y.L. Zhang, J. Zhu, X. Song, X.H. Zhong, Controlling the synthesis of CoO nanocrystals with various morphologies, J. Phys. Chem. C 112 (2008) 5322.
DOI: 10.1021/jp709943x
Google Scholar
[23]
Y.H. Ni, X.F. Cao, G.Z. Hu, Z.S. Yang, X.W. Wei, Y.H. Chen, J. Xu, Preparation, conversion, and comparison of the photocatalytic and electrochemical properties of ZnS(en)0. 5, ZnS, and ZnO, Cryst. Growth & Des. 7 (2007) 280-285.
DOI: 10.1021/cg060312z
Google Scholar
[24]
X.H. Zhong, Y.Y. Feng, I. Lieberwirth, W. Knoll, Facile synthesis of orphology-controlled platinum nanocrystals, Chem. Mater. 18 (2006) 2468-2471.
DOI: 10.1021/cm060463p
Google Scholar
[25]
W. Du, J. Zhu, S. Li, X. Qian, Ultrathin β-In2S3 Nanobelts: Shape-controlled synthesis and optical and photocatalytic properties, Cryst. Growth & Des. 8 (2008) 2130-2136.
DOI: 10.1021/cg7009258
Google Scholar
[26]
X. Wang, X. M. Sun, D. P. Yu, B. S . Zou, Y. D. Li, Rare earth compound nanotubes, Adv. Mater. 15 (2003) 1442-1445.
DOI: 10.1002/adma.200305164
Google Scholar