Synthesis of Nano CuO by Polymeric Precursor Method and its Low Temperature Reduction to Stable Copper Nanoparticles

Article Preview

Abstract:

CuO nanoparticles showing different morphologies were prepared by polymeric precursor method using three different copper sources: basic copper carbonate, copper nitrate and copper hydroxide. The decomposition temperature of the precursors varies from 200 C to 400 C. The effect of the concentration of the polymeric additive was studied. The CuO nanopowder was reduced to metallic copper at low temperature using hydrazine hydrate as a reducing agent. The oxide was treated with the reducing agent in two forms: (1) as dispersion in 0.1% PVA (dispersion method) (2) as slurry with 0.1% PVA applied on a glass plate (plate method). The maroon copper metal nanofluid achieved in dispersion method was stable for six months and the copper nanopowder obtained from the plate method showed stability for more than six months. The precursor, CuO and Cu nanomaterials were characterized by powder XRD, FT-IR, TGA, SEM and TEM techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.R. Sekhar, Sol. Energy Mater Sol Cells 68 (2001) 307-312.

Google Scholar

[2] L. Corrie, Carnes, S. Jennifer, J. Kenneth, Klabunde, B. John, Langmuir 18 (2002) 1352-1359.

Google Scholar

[3] W. Wenzhong, Z. Yongjie, W. Xiaoshu, L. Yingkai, Z. Changlin, W. Guanghou, Mater Res Bull. 37, 6 (2002) 1093-1100.

Google Scholar

[4] V.Y. Gak A.N. Victor,J. Kiwi,J. PhotochemPhotobiol. A. 116 (1998) 57- 62.

Google Scholar

[5] X.P. Gao, J.L. Bao, G.L.H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys Chem.B. 108, 18 (2004) 5547-5551.

Google Scholar

[6] R. Vijaya Kumar, Y. Diamant, A. Gedanken, Chem Mater. 12, 8 (2000) 2301-2305.

Google Scholar

[7] C. Arijit, G. Vinay, K. Sreenivas, K. Rajeev, S. Mozumdar, P.K. Patanjali, Appl Phys. Lett. 84(2004) 1180-1182.

Google Scholar

[8] G. Ren, D. Hu, E.W.C. Cheng, A.V.R. Miguel, P.W. Reip, R.P. Allaker, Int. J. Antimicrob. Agents 33 (2009)587-590.

Google Scholar

[9] K. Tonooka, K. Shimokawa, O. Nishimura, Thin Solid Films 411 (2002)129-133.

DOI: 10.1016/s0040-6090(02)00201-8

Google Scholar

[10] V.R. Palkar, A. Pushan, C. Soma, M. Manu, Phys Rev B. 53(1996) 2167-2170.

Google Scholar

[11] J.F. Xu, W. Ji, Z. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J Solid State Chem. 147(1999) 516-519.

Google Scholar

[12] H.Y. Dang Y.L. Zhang J.K. Liang S.S. Xie, J. Mater. Sci. 28(1993) 5176-5178.

Google Scholar

[13] W. Dominic,A. Laura,I. Toshiyuki,T. Junzu,M. Stephen, Nat. Mater. 2 (2003) 386-390.

Google Scholar

[14] R. Vijaya Kumar, Y. Diamant, A. Gedanken, Langmuir 17, 5 (2001) 1406-1410.

Google Scholar

[15] F. Teng W.Q. Yao,Y. Zheng,Y. Ma,Y. Teng,T. Xu,S. Liang Y.F. Zhu, Sens Actuators B 134 (2008) 761-768.

Google Scholar

[16] J. Xuchuan, H. Thurston, X. Younan, Nano Letters 29 (2002) 1333-1338.

Google Scholar

[17] X. Wang, C. Hu, H. Liu, G. Du, X.S. He, Y. Xi, Sens Actuators B 144 (2010) 220-225.

Google Scholar

[18] K.G.K. Warrier, P.K. Rohatgi, Powder Metal. 29 (1986) 65-69.

Google Scholar

[19] X.F. Tang, Z.J. Yang, W.J. Wang, Colloids Surf. A: Physicochemical and Engineering Aspects, 360, 1-3 (2010) 99-104.

Google Scholar

[20] M.H. Yamukyan, K.V. Manukyan, S.L. Kharatyan, Chem. Eng. J. 137 (2008) 636-642.

Google Scholar

[21] Yong et al, Nanotechnology 18(2007) 035608.

Google Scholar

[22] M.S. Khadga, M.S. Christopher, J.K. Kenneth, J. Phys. Chem. C. 114(2010)14368-14376.

Google Scholar

[23] R.M. Tilaki, A. Irazizad, S.M. Mahdavi, Appl. Phys. A. 88 (2007) 415-419.

Google Scholar

[24] F. Elisabetta, F. Guido, L. Massimiliano, G.L. Isidoro, P. Luisa, Z. Tommaso, R. Norberto, J. Nanomaterials 649130 (2008) 1-6.

Google Scholar

[25] M. Blosi, S. Albonetti, M. Dondi, G. Baldi, J Nanopart. Res. (2010).

Google Scholar