Enhancement of Temperature and Field Coefficient of Resistance in CSD Grown Nanostructure La0.7Ca0.3MnO3 Thin Films

Article Preview

Abstract:

We present the structural, surface and electrical properties of La0.7Ca0.3MnO3 (LCMO) thin films of varying film thicknesses from 150 nm to 300 nm on single crystal LaAlO3 (LAO) (h00) oriented substrate, prepared using Chemical Solution Deposition (CSD) technique. X-ray diffraction study shows that all LCMO films are epitaxial and (h00) oriented. With increasing film thickness all the films displayed excellent transport properties such as a low resistivity, very high metal-insulator transition temperature (TP). All the LCMO films show TP above 275 K. The sharp transition causes highest TCR ~6.10 %/K and FCR ~50 %/T at around room temperature in CSD grown LCMO thin films, which has not been reported so far. A strong dependence of the electrical resistivity and TCR on film thickness is attributed to the oxygen optimization and variation in lattice parameter caused by residual compressive strain of the LCMO films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-162

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. N. R. Rao and B. Raveau, Colossal Magnetoresistance, Charge Ordering and Related Properties and Manganese Oxides, first ed., World Scientific, Singapore, 1998.

DOI: 10.1142/3605

Google Scholar

[2] A. Heredia, F. J. De la Hidalga, A. Torres, A. Jaramillo, Low temperature electrical properties of a boron-doped amorphous silicon bolometer, in: C. L. Claeys, W. W.-Ng, K. M. Nair (Eds.), Low Temperature Electronics and Low Temperature Co-fired Ceramic Based Electronic Devices, The Electrochemical Society, Orlando, Florida, 2003, pp.881-882.

DOI: 10.1557/proc-796-v2.4

Google Scholar

[3] F. Niklaus, C. Vieider, H. Jakobsen, MEMS-Based Uncooled Infrared Bolometer Arrays – A Review, in: J-C. Chiao, X. Chen, Z. Zhou, X. Li (Eds.), Proc. SPIE 6836, MEMS/MOEMS Technologies and Applications III, Vol. 6836, Beijing, China, 2008, pp. 68360D.

DOI: 10.1117/12.755128

Google Scholar

[4] M. A. Todd, P. P. Donohue, P. J. Wright, M. J. Crosbie, P.A. Lane, M.-H. Jo, B. S. H. Pang, M. G. Blamire, Colossal magnetoresistive manganite thin-films for infrared detection and imaging, Ann. Phys. (Leipzig) 13 (2004) 48-51.

DOI: 10.1002/andp.200310042

Google Scholar

[5] R.Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett. 71 (1993) 2331-2333.

Google Scholar

[6] S. Jin, T. H. Tiefel, M. MoCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films, Science 264 (1994) 413-415.

DOI: 10.1126/science.264.5157.413

Google Scholar

[7] S. Pignard, K. Yu-Zhang, Y. Leprince-Wang, K. Han, H. Vincent, J. P. Senateur, Correlation between magnetoresistive properties and growth morphology of La1-xMnO3- δ thin films deposited on SrTiO3, LaAlO3 and MgO, Thin Solid Films 391 (2001) 21-27.

DOI: 10.1016/s0040-6090(01)00970-1

Google Scholar

[8] Y. Q. Li, J. Zhang, S. Pombrik, S. DiMascio, W. Stevens, Y. F. Yan, N. P. Ong, In situ single-liquid-source metal-organic chemical vapor deposition of (La0.8Ca0.2)MnO3 giant magnetoresistive films, J. Mater. Research 10 (1995) 2166-2169.

DOI: 10.1557/jmr.1995.2166

Google Scholar

[9] G. J. Synder, R. Hiskes, S. DiCarolis, M. R. Beasley, T. H. Geballe, Magnetoconductivity and Hall effects in La0.67Ca0.33MnO3, Phys. Rev. B 53 (1996) 14434-14444.

DOI: 10.1063/1.116962

Google Scholar

[10] U. Hasenkox, C. Mitze, R. Waser, Metal Propionate Synthesis of Magnetoresistive La1−x(Ca,Sr)xMnO3 Thin Films, J. Am. Ceram. Soc. 80 (1997) 2709-2713.

DOI: 10.1111/j.1151-2916.1997.tb03180.x

Google Scholar

[11] R. N. Parmar, J. H. Markna, P. S. Solanki, P. S. Vachhani, D. G. Kuberkar, Grain Size Dependent Transport and Magnetoresistance Behavior of Chemical Solution Deposition Grown Nanostructured La0.7Sr0.3MnO3 Manganite Films, Journal of Nanoscience and Nanotechnology 8 (2008) 4146-4151.

DOI: 10.1166/jnn.2008.an51

Google Scholar

[12] K. Tanaka, S. Okamura T. Shiosaki, Fabrication of Perovskite Manganite (La,Sr)MnO3 Thin Films by Chemical Solution Deposition and Their Low-Field Magnetoresistance Properties at Room Temperature, Jpn. J. Appl. Phys. 40 (2001) 6821- 6824.

DOI: 10.1143/jjap.40.6821

Google Scholar

[13] S. Y. Bae, S. X. Wang, Novel sol-gel processing for polycrystalline and epitaxial thin films of La1-xCaxMnO3 with colossal magnetoresistance, J. Mater. Research 13(11) (1998) 3234-3240.

DOI: 10.1557/jmr.1998.0439

Google Scholar

[14] B. C. Nam, W. S. Kim, H. S. Choi, J. C. Kim, N. H. Hur, I. S. Kim, Y. K. Park, Effect of oxygen annealing on the magnetoresistance in La0.7Ca0.3MnO3 epitaxial films, J. Phys. D: Appl. Phys. 34 (2001) 54-62.

DOI: 10.1088/0022-3727/34/1/310

Google Scholar

[15] A. Biswas, M. Rajeswari, R. C. Srivastava, T. Venkatesan, R. L. Greene, Q. Lu, A. L. de Lozanne, A. J. Millis, Strain driven charge ordered state in La0.67Ca0.33MnO3, Phys. Rev. B 63 (2001) 184424-184430.

Google Scholar

[16] S. Angappane, P. Murugaraj, K. Sethupathi, G. Rangarajan, V. S. Sastry, A. A. Chakkaravarthi, P. Ramasamy, Electrical and magnetoresistivity studies in chemical solution deposited La1-xCaxMnO3 thin films, J. Appl. Phys. 89 (2001) 6979-6981.

DOI: 10.1063/1.1362659

Google Scholar

[17] C. A. Perroni, V. Cataudella, G. De Filippis, G. Ladonisi, V. M. Ramaglia, F. Ventriglia, Modeling of strain effects in manganite films, Phy. Rev. B 68 (2003) 224424- 224432.

DOI: 10.1103/physrevb.68.224424

Google Scholar

[18] Y. Lu, J. Klein, C. Hofener, B. Wiedenhorst, J. B. Philipp, F. Herbstritt, A. Marx, L. Alff, R. Gross, Magnetoresistance of coherently strained La2/3Ba1/3MnO3/SrTiO3 superlattices, Phy. Rev. B 62 (2000) 15806-15814.

DOI: 10.1002/pssb.200540048

Google Scholar

[19] H. Y. Hwang, S-W. Cheong, N. P. Ong, B. Batlogg, Spin-Polarized Intergrain unneling in La2/3Sr1/3MnO3, Phys. Rev. Lett. 77 (1996) 2041-2044.

Google Scholar