Structural, Optical and Magnetic Properties of Nanocrystalline Cobalt Doped TiO2 Prepared by Sol-Gel Route

Article Preview

Abstract:

Nanocrystalline Cobalt-doped TiO2 was prepared by Sol-Gel technique, followed by freeze-drying treatment at-30°C temperature for 12hrs. The obtained Gel was thermally treated at 200,400,600, 800°C. 1%, 2% and 4% Cobalt doped TiO2 nanopowder has been prepared X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), was used to study its structural properties. The XRD pattern shows the coexistence of anatase phase and rutile phase. Thermal gravimetric analysis shows Cobalt concentration affects thermal decomposition. UV-Vis Spectroscopy, Photo luminescence (PL), was used to study its Optical properties. Optical Bandgap were calculated with the incorporation of different concentration of cobalt. UV-Visible spectroscopy show variation in band gap for the sample treated at different temperature for same concentration. All Cobalt doped TiO2 nanostructures shows an appearance of Red shift relative to the bulk TiO2. The determination of magnetic properties was also carried out by Vibrating Sample Magnetometer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-175

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen Y, Dionysiou D.D, Correlation of structural properties and film thickness to Photocatalytic activity of thick TiO2 films coated on stainless steel, Applied Catalysis B: Environmental. 69(2006) 24.

DOI: 10.1016/j.apcatb.2006.05.002

Google Scholar

[2] Matsumoto Y, Murakami M, Shono T, Hasagewa T. et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide, Science 291 (2001) 854-856.

DOI: 10.1126/science.1056186

Google Scholar

[3] Seong N. J, Yoon S. G, and Cho C. R. Effects of Co-doping level on the microstructural and ferromagnetic properties of liquid-delivery metalorganic-chemical-vapor-deposited Ti1−xCoxO2 thin films, Appl. Phys. Lett. 81(2002)4209.

DOI: 10.1063/1.1525397

Google Scholar

[4] Murakami M, Matsumoto Y, Hasagewa T, Ahmet P. et al. Cobalt valence states and origins of ferromagnetism in Co doped TiO2 rutile thin films, J. Appl. Phys. 95(2004) 5330.

DOI: 10.1063/1.1695598

Google Scholar

[5] Soo Y.L, Kioseoglou G, Kim S, Kao Y.S. et al. Local environment surrounding magnetic impurity atoms in a structural phase transition of Co-doped TiO2 nanocrystal ferromagnetic semiconductors, Appl. Phys. Lett. 81(2002)655.

DOI: 10.1063/1.1495544

Google Scholar

[6] Huang C, Guo Y, Liu X, and Wang Y, Structural and optical properties of Ti1-xCoxO2 films prepared by sol–gel spin coating, Thin Solid Films 505(2006)141.

DOI: 10.1016/j.tsf.2005.10.021

Google Scholar

[7] Griffin K. A, Pakhomov A. B, Wang C. M, Heald S. M. et al. Intrinsic Ferromagnetism in Insulating Cobalt Doped Anatase TiO2, Phys.Rev. Lett. 94(2005)157204.

Google Scholar

[8] Fukumura T, Yamada Y, Toyosaki H, Hasagewa T. et al. Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronic, Appl. Surf. Sci. 223(2004)62.

DOI: 10.1016/s0169-4332(03)00898-5

Google Scholar

[9] Zhang H. Z. and Banfield J. F,Thermodynamic analysis of phase stability of nanocrystalline Titania, J. Mater. Chem. 8(1998)2073.

Google Scholar

[10] Gennari F. C. and Pasquevich D. M, Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3, J. Mater. Sci. 33(1998)1571.

Google Scholar

[11] Arbiol J, Cerda J, Gedanneau D, Cirera A. et al. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition, J. Appl. Phys. 92(2002)853.

DOI: 10.1063/1.1487915

Google Scholar

[12] Hays J, Punnoose A, Baldner R, Engelhard M. H. et al. Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles, Phys. Rev. B 72(2005) 075203.

Google Scholar

[13] Venkatachalam N, Palanichamy M, Murugesan V, "Enhanced Photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2", J. Mol. Catal. A 266 1-2 (2007)158-165.

DOI: 10.1016/j.molcata.2006.10.051

Google Scholar

[14] Kumar P.M, Badrinarayanan S, Sastry M, Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature, Thin Solid Films 358(2000) 122.

DOI: 10.1016/s0040-6090(01)01767-9

Google Scholar

[15] Yu J, Yu H, Cheng B, Zhao X, Ho J.C, The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition, J. Phys. Chem. B. 107(2003)13871.

DOI: 10.1021/jp036158y

Google Scholar

[16] Subramanian M, Vijayalakshmi S, Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol–gel process, Thin Solid Films 516(2008) 3776–3782.

DOI: 10.1016/j.tsf.2007.06.125

Google Scholar

[17] Hamoon1H.Z.R, Devi1 G.S, J. Nano- Electron. Phys. 59(2011) 66.

Google Scholar

[18] Griffin K. A, Pakhomov A. B, Intrinsic Ferromagnetism in Insulating Cobalt Doped Anatase TiO2, Phys. Rev. Lett. 94(2005)157204.

Google Scholar

[19] Kim D. H, Yang J. S, Investigations on the nature of observed ferromagnetism and possible spin polarization in Co-doped anatase TiO2 thin films, J. Appl. Phys. 93(2003) 6125.

Google Scholar

[20] Dietl T, Ohno H, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science. 287(2000)1019.

DOI: 10.1126/science.287.5455.1019

Google Scholar