Structure of Small Gold Clusters with Si Doping Using DFT (AunSi, n=1-10, 19)

Article Preview

Abstract:

The structures of silicon doped gold clusters AunSi (n = 1-10 and 19) have been investigated using first principle calculations based on density functional theory (DFT). Calculations indicate that the stability of a gold cluster increases with the introduction of a Si atom. In all the low lying geometries, Si prefers peripheral positions. For every ground state configuration with n > 3 (n = 6 and 9 being exceptions) Si has tetra-coordination. In almost all of the tetra coordinated geometries the coordination unit including Si, is in the form of a square pyramid with gold atoms forming the square base. Electronic properties such as HOMO-LUMO gap, ionization potential and electron affinity have also been calculated and support the relative stability of clusters with even n. The study of Au20 cage doped with Si atom has been done .Similar to smaller Si doped gold clusters; the Si atom prefers an exohedral position. The doping of Si atom has enhanced the stability and chemical reactivity of Au20 cluster.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-212

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Templeton, W.P. Wuelfing and R.W. Murray," Monolayer-Protected Cluster Molecules" Acc. Chem. Res. 33 (2000) 27.

DOI: 10.1021/ar9602664

Google Scholar

[2] N. Lopez and J.K Norskov, "Catalytic CO oxidation by a gold nanoparticle: a density functional study", J. Am. Chem. Soc., 124, 38 (2002) 11262- 11263.

DOI: 10.1021/ja026998a

Google Scholar

[3] H. Hakkinen, M. Moseler, U. Landman, "Bonding in Cu, Ag, and Au Clusters: Relativistic Effects, Trends, and Surprises", Phys. Rev. Lett. 89 (2002) 033401.

DOI: 10.1103/physrevlett.89.033401

Google Scholar

[4] J. Li, X. Li, H.J. Zhai, and L.S. Wang, "Au20: A Tetrahedral Cluster", Science 299, (2003) 864 – 867.

Google Scholar

[5] P. Pyykko, N. Runeberg, "Icosahedral WAu12: A Predicted Closed-Shell Species,Stabilized by Aurophilic Attraction and Relativity and in Accord with the 18-Electron Rule", Angew. Chem., Int. Ed. 41 (2002) 2174.

DOI: 10.1002/1521-3773(20020617)41:12<2174::aid-anie2174>3.0.co;2-8

Google Scholar

[6] S. Neukermans, E. Janssens, H.Tanaka, R.E. Silverans, and P. Lievens, "Element- and Size-Dependent Electron Delocalization in AuNX+ Clusters (X=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) ", Phys. Rev. Lett. 90 (2003) 033401.

DOI: 10.1103/physrevlett.90.033401

Google Scholar

[7] X. Li,.B. Kiran, L.F. Cui and L.S. Wang, "Magnetic Properties in Transition Metal Doped Gold Clusters: M@Au6 (M = Ti, V, Cr) ", Phys. Rev.Lett. 95 (2005) 253401.

Google Scholar

[8] H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U.Landman, "Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters", Angew Chem, Int. Ed. 42 (2003) 1297.

DOI: 10.1002/anie.200390334

Google Scholar

[9] E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, and P. Lievens, "Two-dimensional Magic numbers in mass abundances of photofragmented bimetallic clusters", New J. Phys., 5 (2003) 46.

DOI: 10.1088/1367-2630/5/1/346

Google Scholar

[10] E. Janssens, H. Tanaka, S. Neukermans, R.E Silverans and P. Lievens, "Electron delocalization in AuNXM (X=Sc, Ti, Cr, Fe) clusters: A density functional theory and photofragmentation study", Phys. Rev. B, 69 (2004) 085402.

DOI: 10.1103/physrevb.69.085402

Google Scholar

[11] H. Tanaka, S. Neukermans, E. Janssens, R.E. Silverans and P. Lievens, "σ Aromaticity of the Bimetallic Au5Zn+ Cluster", J. Am. Chem. Soc., 125 (2003) 2862.

DOI: 10.1021/ja029157c

Google Scholar

[12] L. Gagliardi,"When Does Gold Behave as a Halogen? Predicted Uranium Tetraauride and Other MAu4 Tetrahedral Species, (M = Ti, Zr, Hf, Th)", J. Am. Chem. Soc., 125 (2003) 7504.

DOI: 10.1021/ja035385a

Google Scholar

[13] D.W. Yuan, Y. Wang, and Z .Zeng," Geometric, electronic, and bonding properties of AuNM (N = 1–7, M = Ni, Pd, Pt) clusters ", J. Chem. Phys., 122 (2005) 114310.

DOI: 10.1063/1.1862239

Google Scholar

[14] B.R. Sahu, G. Maofa,and L. Kleinman, "Density-functional study of palladium-doped small gold clusters", Phys. Rev. B, 67 (2003)115420.

DOI: 10.1103/physrevb.67.115420

Google Scholar

[15] H. Tanaka,S.Neukermans, E. Janssens, R.E. Silverans and P. Lievensa, " Visible and near-Infrared photoabsorption spectrum of Li3O: Resonance enhanced two- photon ionization spectroscopy and ab initio calculations", J. Chem. Phys., 119 (2003) 7115 .

DOI: 10.1063/1.1607319

Google Scholar

[16] K. Koyasu, M. Mitsui, A. Nakajima and K. Kaya," Photoelectron spectroscopy of Palladium-doped gold cluster anions; AunPd− (n=1–4)", Chem. Phys. Lett. 358 (2002) 224.

DOI: 10.1016/s0009-2614(02)00562-6

Google Scholar

[17] M.B. Torres, E.M. Fernández and L.C .Balbás, "Theoretical study of structural, electronic, and magnetic properties of AunM+ clusters (M=Sc, Ti, V, Cr, Mn, Fe, ) Au; n<9 ", Phys. Rev. B, 71 (2005)155412.

Google Scholar

[18] M.F. Jarrold, "Nanosurface chemistry on size-selected silicon clusters", Science 252(1991) 1085.

DOI: 10.1126/science.252.5009.1085

Google Scholar

[19] J.L. Fye and M.F. Jarrold, "Structures of medium-sized silicon clusters", Nature (London) 392 (1998) 582.

Google Scholar

[20] M. Walter and H. Hakkinen, "A hollow tetrahedral cage of hexadecagold dianion provides a robust backbone for a tuneable sub-nanometer oxidation and reduction agent via endohedral doping", Phys. Chem. Chem. Phys., 8 (2006) 5407.

DOI: 10.1039/b612221c

Google Scholar

[21] L.M. Wang, S. Bulusu, W. Huang, R. Pal, L.S. Wang and X.C. Zeng, Doping the Golden cage Au16– with Si, Ge, and Sn J. Am. Chem. Soc., 129 (2007) 15136- 15137.

DOI: 10.1021/ja077465a

Google Scholar

[22] Y.F. Li & A.J. Mao & Y. Li & X.Y. Kuang, " Density functional study on size-dependent structures, stabilities, electronic and magnetic properties of Au(n)M (M = Al and Si, n = 1-9) clusters: comparison with pure gold clusters", J Mol Model, 18, 7 (2012) 3061-3072 .

DOI: 10.1007/s00894-011-1317-8

Google Scholar

[23] Information on www.uam.es/siesta

Google Scholar

[24] P. Ordejon,E. Artacho and J.M. Soler, "Self-consistent order-N density-functional calculations for very large systems", Phys. Rev. B, 53 (1996) R10441.

DOI: 10.1103/physrevb.53.r10441

Google Scholar

[25] D. Sanchez-Portal, P. Ordejon, E. Artacho and J.M. Soler, "Density-functional method for very large systems with LCAO basis sets", Int. J. Quantum Chem 65 (1997) 453.

DOI: 10.1002/(sici)1097-461x(1997)65:5<453::aid-qua9>3.0.co;2-v

Google Scholar

[26] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon and D. Sanchez-Portal, "The Siesta method for ab initio order-N materials simulation", J. Phys. Condens. Matter, 14 (2002) 2745.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[27] R. Parr and W. Yang., "Density-Functional Theory of atoms and Molecules", Oxford University Press NewYork, (1989)

Google Scholar

[28] Perdew, Burke, Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett. 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[29] L. Kleinman and D. M. Bylander, "Efficacious Form for Model Pseudopotentials", Phys. Rev. Lett. 48 (1982) 1425.

DOI: 10.1103/physrevlett.48.1425

Google Scholar

[30] C. Kittle, Introduction to Solid State Physics, 7th ed. (Wiley, New York), (1996).

Google Scholar

[31] R.C. Weast, (CRC Handbook of Chemistry and Physics, 55th ed. (CRC press, Cleveland.,OH) (1974).

Google Scholar

[32] K. Raghavchari, "Theoretical study of small silicon clusters: Equilibrium geometries and electronic structures of Sin (n=2–7,10)", J. Chem. Phys. 84 (1986) 5672.

Google Scholar

[33] D.J. Trevor, D. M. Cox, K.C. Reichmann, R.O. Brickmann and A. Kaldor, "Ionizing laser intensity dependence of the silicon cluster photoionization mass spectrum ", J. Phys. Chem. 91 (1987) 2598.

DOI: 10.1021/j100294a030

Google Scholar

[34] C. B. Winstead, S. J. Pankstis and J. L.Gole, "What is the ionization potential of silicon dimer?" Chem. Phys. Lett. 237 (1995) 81- 85.

DOI: 10.1016/0009-2614(95)00266-7

Google Scholar

[35] S.F. Li, X. Xue, Y. Jia, G. Zhao, M. Zhang. and X.G. Gong, "Stable cubic metal- semiconductor alloy clusters: X4Y4(X=Cu,Ag,Au,Ti;Y=C,Si)", Phys. Rev B, 73 (2006) 165401.

Google Scholar

[36] C. Majumder, "Effect of Si adsorption on the atomic and electronic structure of Aun clusters (n=1–8) and the Au (111) surface: First-principles calculations", Phys. Rev. B 75 (2007) 235409.

Google Scholar

[37] C. Majumder, A.K. Kandalam and P. Jena," Structure and Bonding of Au5M (M=Na, Mg, Al, Si, P, S)", Phys. Rev. B, 74 (2006) 205437.

Google Scholar

[38] R. Pal, L.M. Wang, W. Huang, L. S. Wang, L.S. and X.C. Zeng, "Structural Evolution of doped Gold Clusters: MAux– (M = Si, Ge, Sn; x = 5–8) ", J. Am.Chem. Soc, 131(9) (2009) 3396-3404.

DOI: 10.1021/ja810093t

Google Scholar

[39] P. Gruene, D.M. Rayer, B. Redlich, A.F. G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, "Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase Science", 321(2008) 674.

DOI: 10.1126/science.1161166

Google Scholar

[40] J. Wang, G. Wang, J. Zhao, Structures and electronic properties of Cu20, Ag20, and Au20 clusters with density functional method", Chem. Phys. Lett., 380 (2003)716.

DOI: 10.1016/j.cplett.2003.09.062

Google Scholar

[41] L.M. Molina, B.J. Hammer, "The activity of the tetrahedral Au20 cluster: charging and impurity effects", J. Catal., 233 (2005) 399.

DOI: 10.1016/j.jcat.2005.04.037

Google Scholar

[42] Kiran Majer and Bernd v. Issendorff, "Photoelectron spectroscopy of silicon doped gold and silver cluster anions", Phys. Chem. Chem. Phys., 14 (2012) 9371-9376.

DOI: 10.1039/c2cp24095e

Google Scholar