Electrokinetic Potential for Characterization of Nanosctructured Solid Flat Surfaces

Article Preview

Abstract:

Electrokinetic potential (zeta potential) is a characteristic parameter for description of the surface chemistry of solid flat materials and it can be used for a fast analysis of materials modified by different chemical or physical methods. Due to its sensitivity, zeta potential is able to distinguish surface modified by coating with monolayers of various materials or nanostructures created after plasma treatment. Also metal nanostructures deposited on surfaces can be characterized by zeta potential. It can also be used for isoelectric point determination of materials. We present data on zeta potential in 0.001 mol/dm3 KCl at constant pH7.0 and also in pH range (2.5-7.0) for isoelectric point determination for pristine polymers PET, PTFE, PS, LDPE, HDPE, PLLA, PVF, PVDF, PMP and polyimides (Upilex R, Upilex S, Kapton). The zeta potential of selected polymers, modified by plasma and by chemical coatings (e.g. by biphenyldithiol or polyethyleneglycol) or by gold deposition was measured too. Zeta potentials of these modified materials were also studied to confirmation that electrokinetic analysis is acceptable method for their fast description.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-39

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Řezníčková, Z. Kolská, V. Hnatowicz, P. Stopka, V. Švorčík, Comparison of glow argon plasma-induced surface changes of thermoplastic polymers, Nucl. Instrum. Meth. B 269 (2011) 83-88.

DOI: 10.1016/j.nimb.2010.11.018

Google Scholar

[2] V. Švorčík, Z. Kolská, T. Luxbacher, J. Mistrík, Properties of Au nano-layer sputtered on PET, Mater. Lett. 64 (2010) 611-613.

DOI: 10.1016/j.matlet.2009.12.018

Google Scholar

[3] N. Slepičková Kasálková, P. Slepička, Z. Kolská, P. Sajdl, L. Bačáková, S. Rimpelová, V. Švorčík, Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles, Nucl. Instrum. Meth. B 272 (2012) 391-394.

DOI: 10.1016/j.nimb.2011.01.108

Google Scholar

[4] V. Švorčík, Z. Makajová, N. Kasálková-Slepičková, Z. Kolská, L. Bačáková, Plasma-Modified and Polyethylene Glycol-Grafted Polymers for Potential Tissue Engineering Applications, J. Nanosci. Nanotechnol. 12 (2012) 6665-6671.

DOI: 10.1166/jnn.2012.4545

Google Scholar

[5] P. Hiemenz, R. Rajagopalan, Principles of colloid and surface chemistry, Marcel Dekker, Inc., New York, (1997).

Google Scholar

[6] J.K. Beattie, The intrinsic charge on hydrophobic microfluidic substrates, Lab. Chip. 6 (2006) 1409-1411.

DOI: 10.1039/b610537h

Google Scholar

[7] B.J. Kirby, E.F. Hasselbrink, Jr., Zeta potential of microfludic substrates: 1. Theory, experimental techniques, and effects on separation, Electrophoresis 25 (2004) 187-202.

DOI: 10.1002/elps.200305754

Google Scholar

[8] T. Luxbacher, H. Bukšek, I. Petrinić, T. Pušić, Zeta potential determination of flat solid surfaces using a SurPASS electrokinetic analyzer, Tekstil 58 (2009) 393-400.

Google Scholar

[9] V. Švorčík, K. Kolářová, P. Slepička, A. Macková, V. Hnatowicz, Modification of surface properties of high and low density polyethylene by Ar plasma discharge, Polym Degr. Stab. 91 (2006) 1219-1225.

DOI: 10.1016/j.polymdegradstab.2005.09.007

Google Scholar

[10] R. Mikulíková, S. Moritz, T. Gumpenberger, M. Olbrich, C. Romanin, L. Bačáková, V. Švorčík, J. Heitz, Cell microarrays on photochemically modified polytetrafluorethylene, Biomaterials 26 (2005) 5572-5580.

DOI: 10.1016/j.biomaterials.2005.02.010

Google Scholar

[11] J. Heitz, V. Švorčík, L. Bačáková, K. Ročková, E. Ratajová, T. Gumpenberger, D. Bauerle, B. Dvořánková, H. Kahr, I. Graz, C. Romanin, Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere, J. Biomed. Mater. Res. 67A (2003).

DOI: 10.1002/jbm.a.10043

Google Scholar

[12] V. Švorčík, N. Kasálková, P. Slepička, K. Záruba, L. Bačáková, M. Pařízek, T. Ruml, A. Macková, Nucl. Instrum. Meth. B 267 (2009) 1904-(1910).

DOI: 10.1016/j.nimb.2009.03.099

Google Scholar

[13] A. Řezníčková, Z. Kolská, V. Hnatowicz, V. Švorčík, Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold, J. Nanopar. Res. 13 (2011) 2929-2938.

DOI: 10.1007/s11051-010-0183-0

Google Scholar

[14] L. Bacakova, E. Filova, M. Pařízek, T. Ruml, V. Švorčík, Control of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnol. Adv. 29 (2011) 739-767.

DOI: 10.1016/j.biotechadv.2011.06.004

Google Scholar

[15] Z. Kolská, A. Řezníčková, V. Švorčík, Surface characterization of polymer foils. e-Polymers 083 (2012) 1-13.

DOI: 10.1515/epoly.2012.12.1.960

Google Scholar

[16] J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Švorčík. Properties of gold nanostructures sputtered on glass. Nanoscale Res. Lett. 6 (2011) 96-104.

DOI: 10.1186/1556-276x-6-96

Google Scholar

[17] V. Švorčík, A. Řezníčková, Z. Kolská, P. Slepička, V. Hnatowicz, Variable surface properties of PTFE foils, e-Polymers 133 (2010) 1-5.

DOI: 10.1515/epoly.2010.10.1.1493

Google Scholar

[18] J. Škvarla, T. Luxbacher, M. Nagy, M. Sisol, Relationship of surface hydrophilicity, charge, and roughness of PET foils stimulated by incipient alkaline hydrolysis, ACS Appl. Mater. Inter. 2 (2010) 2116-2127.

DOI: 10.1021/am100368v

Google Scholar

[19] N. Kasálková, Z. Makajová, M. Pařízek, P. Slepička, K. Kolářová, L. Bačáková, V. Hnatowicz, V. Švorčík, Cells adhesion and proliferation on plasma-treated and PEG-grafted PE, J. Adhes. Sci. Technol. 24 (2010) 743-754.

DOI: 10.1163/016942409x12579497420762

Google Scholar

[20] P. Slepička, Z. Kolská, J. Náhlík, V. Hnatowicz, V. Švorčík. Properties of Au nanolayers on polyethyleneterephthalate and polytetrafluoroethylene. Surf. Interface Anal. 41 (2009) 741-745.

DOI: 10.1002/sia.3082

Google Scholar