[1]
S. Ijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.
Google Scholar
[2]
S.C. Tjong, Carbon Nanotubes Reinforced Composites: Metal and Ceramic Matrices, Wiley-VCH, Weimheim, (2009).
Google Scholar
[3]
J. Cho, A.R. Boccaccini, M.S.P. Shaffer, Ceramic matrix composites containing carbon nanotubes, J. Mater. Sci. 44 (2009) 1934–(1951).
DOI: 10.1007/s10853-009-3262-9
Google Scholar
[4]
E. Zapata-Solvas, D. Gomez-Garcia, A. Dominguez-Rodriguez, Towards physical properties tailoring of carbon nanotubes reinforced ceramic matrix composites, J. Eur. Ceram. Soc. 32 (2012) 3001–3020.
DOI: 10.1016/j.jeurceramsoc.2012.04.018
Google Scholar
[5]
A. Kasperski, A. Weibel, C. Estournès, C. Laurent, A. Peigney, Multi-walled carbon nanotube–Al2O3 composites: Covalent or non-covalent functionalization for mechanical reinforcement, Scripta Mater. 75 (2014) 46–49.
DOI: 10.1016/j.scriptamat.2013.11.015
Google Scholar
[6]
C. Palencia, M.A. Mazo, A. Nistal, F. Rubio, J. Rubio, J.L. Oteo, Processing and properties of carbon nanofibers reinforced epoxy powder composites, J. Nanopart. Res. 13 (2011) 6021–6034.
DOI: 10.1007/s11051-011-0331-1
Google Scholar
[7]
Y. Wang, Z. Iqbal, S. Mitra, Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite, Carbon 44 (2006) 2804–2808.
DOI: 10.1016/j.carbon.2006.03.036
Google Scholar
[8]
F. Lupo, R. Kamalakran, C. Scheu, N. Grobert, M. Ruhle, Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization, Carbon 42 (2004) 1995–(1999).
DOI: 10.1016/j.carbon.2004.03.037
Google Scholar
[9]
A.R. Boccaccini, D.R. Acevedo, G. Brusatin, P. Colombo, Borosilicate glass matrix composites containing multi-wall carbon nanotubes, J. Eur. Ceram. Soc. 25 (2005) 1515–1523.
DOI: 10.1016/j.jeurceramsoc.2004.05.015
Google Scholar
[10]
M.A. Mazo, C. Palencia, A. Nistal, F. Rubio, J. Rubio, J.L. Oteo, Microstructure of low temperature processed CNFs/glass nanocomposites, J. Mater. Sci. 47 (2012) 5169–5180.
DOI: 10.1007/s10853-012-6396-0
Google Scholar
[11]
E. Miniach, A. Siliwak, A. Moyseowicz, G. Gryglewicz, Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst, J. Mater. Sci 51 (2016) 5367-5376.
DOI: 10.1007/s10853-016-9839-1
Google Scholar
[12]
C. Zheng, M. Feng, Y. Du, H. Zhan, Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass, Carbon 47 (2009) 2889–2897.
DOI: 10.1016/j.carbon.2009.06.033
Google Scholar
[13]
C. Xiang, Y. Pan, J. Guo, Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites, Ceram. Int. 33 (2007) 1293-1297.
DOI: 10.1016/j.ceramint.2006.05.001
Google Scholar
[14]
B.T.T. Chu, G. Tobias, C.G. Salzmann, B. Ballesteros, N. Grobert, R.I. Todd, M.L.H. Green, Fabrication of carbon-nanotube-reinforced glass-ceramic nanocomposites by ultrasonic in situ sol-gel processing, J. Mater. Chem. 18 (2008) 5344–5349.
DOI: 10.1039/b809369e
Google Scholar
[15]
A. Peigney, Ch. Laurent, O. Dumortier, A. Rousset, Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders, J. Eur. Ceram. Soc. 18 (1998) 1995–(2004).
DOI: 10.1016/s0955-2219(98)00141-1
Google Scholar
[16]
Ch. Laurent, A. Peigney, O. Dumortier, A. Rousset, Carbon nanotubes–Fe–Alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc. 18 (1998) 2005–(2013).
DOI: 10.1016/s0955-2219(98)00142-3
Google Scholar
[17]
Y. Aoki, S. Suzuki, S. Okubo, H. Kataura, H. Nagasawa, Y. Achiba, Formation of single-wall carbon nanotubes by using porous glass, Chem. Lett. 34 (2005) 562-563.
DOI: 10.1246/cl.2005.562
Google Scholar
[18]
O.V. Mazurin, E.A. Parai-Koshits, N.S. Andreev, Phase Separation in Glass, North-Holland, Amsterdam, (1984).
Google Scholar
[19]
I. Martin-Gullon, J. Vera, J.A. Conesa, J.L. González, C. Merino, Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor, Carbon 44 (2006) 1572–1580.
DOI: 10.1016/j.carbon.2005.12.027
Google Scholar
[20]
L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: A review of synthesizing, properties and applications, Mater. 7 (2014) 3919-3945.
DOI: 10.3390/ma7053919
Google Scholar
[21]
Y. Qiu, G. Li, Y. Hou, Z. Pan, H. Li, W. Li, M. Liu, F. Ye, X. Yang, Y. Zhang, Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high- energy flexible supercapacitors, Chem. Mater. 27 (2015).
DOI: 10.1021/cm503784x
Google Scholar
[22]
H. Samadian, S. S. Zakariaee, M. Adabi, H. Mobasheri, M. Azami, R. Faridi-Majidi, Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks, RSC Adv. 6 (2016) 111908–111918.
DOI: 10.1039/c6ra21596c
Google Scholar
[23]
H. Samadian, H. Mobasheri, S. Hasanpour, R. Faridi-Majidi, Electrospinning of polyacrylonitrile nanofibers and simulation of electric field via finite element method, Nanomed. Res. J. 2 (2017) 87-92.
Google Scholar
[24]
D. Enke, D.F. Janowski, W. Schwiege, Porous glasses in the 21st century. A short review, Microporous Mesoporous Mater. 60 (2003) 19–30.
DOI: 10.1016/s1387-1811(03)00329-9
Google Scholar
[25]
S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309-319.
DOI: 10.1021/ja01269a023
Google Scholar
[26]
E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373–380.
DOI: 10.1021/ja01145a126
Google Scholar
[27]
W. D Harkins, G. Jura, A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid, J. Am. Chem. Soc. 66 (1944).
DOI: 10.1021/ja01236a048
Google Scholar
[28]
T. Yongxing, J. Zhonghong, S. Xiuyu, NMR, IR and Raman spectra study of the structure of borate and borosilicate glasses, J. Non-Cryst. Solids 112 (1989) 131-135.
DOI: 10.1016/0022-3093(89)90507-3
Google Scholar
[29]
M. Mellini, Y. Fuchs, C. Viti, C. Lemaire, J. Linares, Insights into the antigorite structure from Mössbauer and FTIR spectroscopies, Eur. J. Mineral 14 (2002) 97-104.
DOI: 10.1127/0935-1221/2002/0014-0097
Google Scholar
[30]
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodríguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area pore size distribution (IUPAC technical report), Pure Appl. Chem. 87 (2015).
DOI: 10.1515/iupac.87.0731
Google Scholar
[31]
K. Kaneko, Determination of pore size and pore size distribution 1. Adsorbents and catalysts, J. Membrane Sci. 96 (1994) 59-89.
DOI: 10.1016/0376-7388(94)00126-x
Google Scholar
[32]
J.J.B. van Eijk Van Voorthuijsen, P. Franzen, Structure and properties of compounds formed during the preparation of nickel-on-silica catalysts, Recl. Trav. Chim. Pays-Bas 70 (1951) 793–812.
DOI: 10.1002/recl.19510700906
Google Scholar
[33]
J.W.E. Coenen, Characterization of the standard nickel/silica catalyst EuroNi-1: III. Investigations of catalyst structure, Appl. Catal. 75 (1991) 193–223.
DOI: 10.1016/s0166-9834(00)83132-2
Google Scholar
[34]
B.D. Cullity, Elements of X-ray Diffraction, second ed., Addison Wesley, Massachusetts, (1978).
Google Scholar
[35]
J. -M. Ting, W. -Y. Wu, K. -H. Liao, H. -H. Wu, Low temperature, non-isothermal growth of carbon nanotubes, Carbon 47 (2009) 2671–2678.
DOI: 10.1016/j.carbon.2009.05.023
Google Scholar
[36]
H. -P. Li, J. -W. Fan, J. -L. Kang, N. -Q. Zhao, X. -X. Wang, B. -E. Li, In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites, Trans. Nonferrous Met. Soc. China 24 (2014) 2331−2336.
DOI: 10.1016/s1003-6326(14)63353-7
Google Scholar
[37]
S. Takenaka, S. Kobayashi, H. Ogihara, K. Otsuka, Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber, J. Catal. 217 (2003) 79–87.
DOI: 10.1016/s0021-9517(02)00185-9
Google Scholar
[38]
M. Steinberg, Fossil fuel decarbonization technology for mitigating global warming, Int. J. Hydrogen. Energy 24 (1999) 771-777.
DOI: 10.1016/s0360-3199(98)00128-1
Google Scholar
[39]
D.S. Knight, W. B White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4 (1989) 385–393.
Google Scholar
[40]
F. Tunistra, J.L. Koening, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126–1130.
Google Scholar
[41]
E. Boccaleri, A. Arrais, A. Frache, W. Gianelli, P. Fino, G. Camino, Comprehensive spectral and instrumental approaches for the easy monitoring of features and purity of different carbon nanostructures for nanocomposite applications, Mater. Sci. Eng. B 131 (2006).
DOI: 10.1016/j.mseb.2006.03.028
Google Scholar
[42]
P. Lespade, A. Marchand, M. Couzi, F. Cruege, Caracterisation de materiauxcarbones par microspectrometrie Raman, Carbon 22 (1984) 375–385.
DOI: 10.1016/0008-6223(84)90009-5
Google Scholar
[43]
M.A. Mazo, A. Tamayo, J. Rubio, Advanced silicon oxycarbide-carbon composites for high temperature resistant friction systems, J. Eur. Ceram. Soc. 36 (2016) 2443-2452.
DOI: 10.1016/j.jeurceramsoc.2016.03.012
Google Scholar
[44]
M.K. Tabatabaei, H.G. Fard, J. Koohsorkhi, Low-temperature growth of vertically aligned carbon nanotubes on a glass substrate using low power PECVD, J. Nano Res. 27 (2014) 163-171.
DOI: 10.4028/www.scientific.net/jnanor.27.163
Google Scholar
[45]
A. Rahman. K.K. Kar, Effect of coating time and temperature on electroless deposition of cobalt-phosphorous for the growth of carbon nanotubes on the surface of E-glass fibers/fabric, Fuller. Nanotubub. Car. N. 19 (2011) 373–397.
DOI: 10.1080/15363831003722797
Google Scholar
[46]
H. -H. Wu, J. -M. Ting, D.K. Mishra, Growth of carbon nanotubes in the microchannels of glass substrates, Diam. Relat. Mater. 17 (2008) 1462–1466.
Google Scholar
[47]
C. Laurent, A. Peigney, A. Rousset, Synthesis of carbon nanotubes–Fe–Al2O3 nanocomposite powders by selective reduction of different Al1. 8Fe0. 2O3 solid solutions, J. Mater. Chem. 8 (1998) 1263–1271.
DOI: 10.1039/a706726g
Google Scholar