Carbon Nanofibers Grown In Situ on Porous Glass

Article Preview

Abstract:

Carbon nanofibers (CNFs) were grown in situ on porous glass at different temperatures and times using a Ni acetate catalyst and CH4/N2 as a carbon source. The porous glass was obtained by acid leaching of phase separated borosilicate glass, which generates a broad size distribution of mesopores (≈20 nm). Subsequent impregnation with Ni acetate reduces the pore size to ≈ 4 nm but also creates new micropores, thus increasing the surface area. During thermal treatment the surface area decreases as temperature rises, mainly due to shrinkage of the glassy matrix; however new pores are created at ≈ 70 nm (mainly at 600 oC) associated to the generation of CNFs on the glass surface, indicating this temperature offers the best conditions. The CNFs grow inside and fill in the micro-mesopores in the porous glass. They do not grow at 500 oC as the Ni acetate is not transformed into metallic Ni. Ni deactivation occurs at temperatures over 700 oC, thus reducing the formation of CNFs. At 1000 oC the degradation of CH4 leads to a thickening of the CNFs. The thermal degradation of the CNFs occurs in two steps, the first (360-416oC) corresponding to CNFs grown on the glass surface and the second (518-649oC) to CNFs grown inside the glass pores. Treatment times over 2 h lead to the deactivation of Ni, pore shrinkage and hence lower CNF yields.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-17

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

Google Scholar

[2] S.C. Tjong, Carbon Nanotubes Reinforced Composites: Metal and Ceramic Matrices, Wiley-VCH, Weimheim, (2009).

Google Scholar

[3] J. Cho, A.R. Boccaccini, M.S.P. Shaffer, Ceramic matrix composites containing carbon nanotubes, J. Mater. Sci. 44 (2009) 1934–(1951).

DOI: 10.1007/s10853-009-3262-9

Google Scholar

[4] E. Zapata-Solvas, D. Gomez-Garcia, A. Dominguez-Rodriguez, Towards physical properties tailoring of carbon nanotubes reinforced ceramic matrix composites, J. Eur. Ceram. Soc. 32 (2012) 3001–3020.

DOI: 10.1016/j.jeurceramsoc.2012.04.018

Google Scholar

[5] A. Kasperski, A. Weibel, C. Estournès, C. Laurent, A. Peigney, Multi-walled carbon nanotube–Al2O3 composites: Covalent or non-covalent functionalization for mechanical reinforcement, Scripta Mater. 75 (2014) 46–49.

DOI: 10.1016/j.scriptamat.2013.11.015

Google Scholar

[6] C. Palencia, M.A. Mazo, A. Nistal, F. Rubio, J. Rubio, J.L. Oteo, Processing and properties of carbon nanofibers reinforced epoxy powder composites, J. Nanopart. Res. 13 (2011) 6021–6034.

DOI: 10.1007/s11051-011-0331-1

Google Scholar

[7] Y. Wang, Z. Iqbal, S. Mitra, Rapid, low temperature microwave synthesis of novel carbon nanotube–silicon carbide composite, Carbon 44 (2006) 2804–2808.

DOI: 10.1016/j.carbon.2006.03.036

Google Scholar

[8] F. Lupo, R. Kamalakran, C. Scheu, N. Grobert, M. Ruhle, Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization, Carbon 42 (2004) 1995–(1999).

DOI: 10.1016/j.carbon.2004.03.037

Google Scholar

[9] A.R. Boccaccini, D.R. Acevedo, G. Brusatin, P. Colombo, Borosilicate glass matrix composites containing multi-wall carbon nanotubes, J. Eur. Ceram. Soc. 25 (2005) 1515–1523.

DOI: 10.1016/j.jeurceramsoc.2004.05.015

Google Scholar

[10] M.A. Mazo, C. Palencia, A. Nistal, F. Rubio, J. Rubio, J.L. Oteo, Microstructure of low temperature processed CNFs/glass nanocomposites, J. Mater. Sci. 47 (2012) 5169–5180.

DOI: 10.1007/s10853-012-6396-0

Google Scholar

[11] E. Miniach, A. Siliwak, A. Moyseowicz, G. Gryglewicz, Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst, J. Mater. Sci 51 (2016) 5367-5376.

DOI: 10.1007/s10853-016-9839-1

Google Scholar

[12] C. Zheng, M. Feng, Y. Du, H. Zhan, Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass, Carbon 47 (2009) 2889–2897.

DOI: 10.1016/j.carbon.2009.06.033

Google Scholar

[13] C. Xiang, Y. Pan, J. Guo, Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites, Ceram. Int. 33 (2007) 1293-1297.

DOI: 10.1016/j.ceramint.2006.05.001

Google Scholar

[14] B.T.T. Chu, G. Tobias, C.G. Salzmann, B. Ballesteros, N. Grobert, R.I. Todd, M.L.H. Green, Fabrication of carbon-nanotube-reinforced glass-ceramic nanocomposites by ultrasonic in situ sol-gel processing, J. Mater. Chem. 18 (2008) 5344–5349.

DOI: 10.1039/b809369e

Google Scholar

[15] A. Peigney, Ch. Laurent, O. Dumortier, A. Rousset, Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders, J. Eur. Ceram. Soc. 18 (1998) 1995–(2004).

DOI: 10.1016/s0955-2219(98)00141-1

Google Scholar

[16] Ch. Laurent, A. Peigney, O. Dumortier, A. Rousset, Carbon nanotubes–Fe–Alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc. 18 (1998) 2005–(2013).

DOI: 10.1016/s0955-2219(98)00142-3

Google Scholar

[17] Y. Aoki, S. Suzuki, S. Okubo, H. Kataura, H. Nagasawa, Y. Achiba, Formation of single-wall carbon nanotubes by using porous glass, Chem. Lett. 34 (2005) 562-563.

DOI: 10.1246/cl.2005.562

Google Scholar

[18] O.V. Mazurin, E.A. Parai-Koshits, N.S. Andreev, Phase Separation in Glass, North-Holland, Amsterdam, (1984).

Google Scholar

[19] I. Martin-Gullon, J. Vera, J.A. Conesa, J.L. González, C. Merino, Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor, Carbon 44 (2006) 1572–1580.

DOI: 10.1016/j.carbon.2005.12.027

Google Scholar

[20] L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: A review of synthesizing, properties and applications, Mater. 7 (2014) 3919-3945.

DOI: 10.3390/ma7053919

Google Scholar

[21] Y. Qiu, G. Li, Y. Hou, Z. Pan, H. Li, W. Li, M. Liu, F. Ye, X. Yang, Y. Zhang, Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high- energy flexible supercapacitors, Chem. Mater. 27 (2015).

DOI: 10.1021/cm503784x

Google Scholar

[22] H. Samadian, S. S. Zakariaee, M. Adabi, H. Mobasheri, M. Azami, R. Faridi-Majidi, Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks, RSC Adv. 6 (2016) 111908–111918.

DOI: 10.1039/c6ra21596c

Google Scholar

[23] H. Samadian, H. Mobasheri, S. Hasanpour, R. Faridi-Majidi, Electrospinning of polyacrylonitrile nanofibers and simulation of electric field via finite element method, Nanomed. Res. J. 2 (2017) 87-92.

Google Scholar

[24] D. Enke, D.F. Janowski, W. Schwiege, Porous glasses in the 21st century. A short review, Microporous Mesoporous Mater. 60 (2003) 19–30.

DOI: 10.1016/s1387-1811(03)00329-9

Google Scholar

[25] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309-319.

DOI: 10.1021/ja01269a023

Google Scholar

[26] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 73 (1951) 373–380.

DOI: 10.1021/ja01145a126

Google Scholar

[27] W. D Harkins, G. Jura, A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid, J. Am. Chem. Soc. 66 (1944).

DOI: 10.1021/ja01236a048

Google Scholar

[28] T. Yongxing, J. Zhonghong, S. Xiuyu, NMR, IR and Raman spectra study of the structure of borate and borosilicate glasses, J. Non-Cryst. Solids 112 (1989) 131-135.

DOI: 10.1016/0022-3093(89)90507-3

Google Scholar

[29] M. Mellini, Y. Fuchs, C. Viti, C. Lemaire, J. Linares, Insights into the antigorite structure from Mössbauer and FTIR spectroscopies, Eur. J. Mineral 14 (2002) 97-104.

DOI: 10.1127/0935-1221/2002/0014-0097

Google Scholar

[30] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodríguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area pore size distribution (IUPAC technical report), Pure Appl. Chem. 87 (2015).

DOI: 10.1515/iupac.87.0731

Google Scholar

[31] K. Kaneko, Determination of pore size and pore size distribution 1. Adsorbents and catalysts, J. Membrane Sci. 96 (1994) 59-89.

DOI: 10.1016/0376-7388(94)00126-x

Google Scholar

[32] J.J.B. van Eijk Van Voorthuijsen, P. Franzen, Structure and properties of compounds formed during the preparation of nickel-on-silica catalysts, Recl. Trav. Chim. Pays-Bas 70 (1951) 793–812.

DOI: 10.1002/recl.19510700906

Google Scholar

[33] J.W.E. Coenen, Characterization of the standard nickel/silica catalyst EuroNi-1: III. Investigations of catalyst structure, Appl. Catal. 75 (1991) 193–223.

DOI: 10.1016/s0166-9834(00)83132-2

Google Scholar

[34] B.D. Cullity, Elements of X-ray Diffraction, second ed., Addison Wesley, Massachusetts, (1978).

Google Scholar

[35] J. -M. Ting, W. -Y. Wu, K. -H. Liao, H. -H. Wu, Low temperature, non-isothermal growth of carbon nanotubes, Carbon 47 (2009) 2671–2678.

DOI: 10.1016/j.carbon.2009.05.023

Google Scholar

[36] H. -P. Li, J. -W. Fan, J. -L. Kang, N. -Q. Zhao, X. -X. Wang, B. -E. Li, In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites, Trans. Nonferrous Met. Soc. China 24 (2014) 2331−2336.

DOI: 10.1016/s1003-6326(14)63353-7

Google Scholar

[37] S. Takenaka, S. Kobayashi, H. Ogihara, K. Otsuka, Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber, J. Catal. 217 (2003) 79–87.

DOI: 10.1016/s0021-9517(02)00185-9

Google Scholar

[38] M. Steinberg, Fossil fuel decarbonization technology for mitigating global warming, Int. J. Hydrogen. Energy 24 (1999) 771-777.

DOI: 10.1016/s0360-3199(98)00128-1

Google Scholar

[39] D.S. Knight, W. B White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4 (1989) 385–393.

Google Scholar

[40] F. Tunistra, J.L. Koening, Raman spectrum of graphite, J. Chem. Phys. 53 (1970) 1126–1130.

Google Scholar

[41] E. Boccaleri, A. Arrais, A. Frache, W. Gianelli, P. Fino, G. Camino, Comprehensive spectral and instrumental approaches for the easy monitoring of features and purity of different carbon nanostructures for nanocomposite applications, Mater. Sci. Eng. B 131 (2006).

DOI: 10.1016/j.mseb.2006.03.028

Google Scholar

[42] P. Lespade, A. Marchand, M. Couzi, F. Cruege, Caracterisation de materiauxcarbones par microspectrometrie Raman, Carbon 22 (1984) 375–385.

DOI: 10.1016/0008-6223(84)90009-5

Google Scholar

[43] M.A. Mazo, A. Tamayo, J. Rubio, Advanced silicon oxycarbide-carbon composites for high temperature resistant friction systems, J. Eur. Ceram. Soc. 36 (2016) 2443-2452.

DOI: 10.1016/j.jeurceramsoc.2016.03.012

Google Scholar

[44] M.K. Tabatabaei, H.G. Fard, J. Koohsorkhi, Low-temperature growth of vertically aligned carbon nanotubes on a glass substrate using low power PECVD, J. Nano Res. 27 (2014) 163-171.

DOI: 10.4028/www.scientific.net/jnanor.27.163

Google Scholar

[45] A. Rahman. K.K. Kar, Effect of coating time and temperature on electroless deposition of cobalt-phosphorous for the growth of carbon nanotubes on the surface of E-glass fibers/fabric, Fuller. Nanotubub. Car. N. 19 (2011) 373–397.

DOI: 10.1080/15363831003722797

Google Scholar

[46] H. -H. Wu, J. -M. Ting, D.K. Mishra, Growth of carbon nanotubes in the microchannels of glass substrates, Diam. Relat. Mater. 17 (2008) 1462–1466.

Google Scholar

[47] C. Laurent, A. Peigney, A. Rousset, Synthesis of carbon nanotubes–Fe–Al2O3 nanocomposite powders by selective reduction of different Al1. 8Fe0. 2O3 solid solutions, J. Mater. Chem. 8 (1998) 1263–1271.

DOI: 10.1039/a706726g

Google Scholar