Pressure-Driven Gas Flow through Nano-Channels at High Knudsen Numbers

Article Preview

Abstract:

Flow through nano-channels is important in several fields, ranging from natural porous media to microfluidics. It is therefore important to study the flow under controlled conditions. While quite a lot of work has been done on the flow of liquids through nano-channels, comparatively little systematic work has been done on gas flow. Here we present a study of the flow of argon through nano-channels. We study samples with 2000 parallel nano-channels, with quadratic cross section. Each side is 100nm. The total length is 20 m. The nano-channels are made by patterning a Si<110> wafer usingelectron beam lithography (EBL) followed by reactive ion etching and with subsequent anodic bonding between silicon and a borosilicate glass as a top plate. The samples were investigated using a home-built apparatus which allows us to measure flow at high Knudsen numbers (from around 10 to 550). We compare our results with a range of theoretical flow models. As innovation this work provides measurements of gas transport from the home-built apparatus. The system records the pressure profile of each sample and the mass flow rate is calculated numerically from the pressure data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-127

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Beskok and G. E. Karniadakis. Report: a model for flows in channels, pipes, and ducts at mi- cro and nano scales. Microscale Thermophysical Engineering, 3(1): 43-77, 1999. doi: 10. 1080/108939599199864. URL http: /dx. doi. org/10. 1080/108939599199864.

DOI: 10.1080/108939599199864

Google Scholar

[2] R. B. Bird, W. E. Steward, and E. N. Lightfoot. Transport phenomena. John Wiley and Sons, New York, (2002).

Google Scholar

[3] W. Chen, X. JingJuan, C. HongYuan, and X. XingHua. Mass transport in nanofluidic devices. Science China Chemistry, 55(4): 453-468, 2012. ISSN 1869-1870. doi: 10. 1007/s11426-012-4542- 9. URL http: /dx. doi. org/10. 1007/s11426-012-4542-9.

DOI: 10.1007/s11426-012-4542-9

Google Scholar

[4] N. Dongari, A. Sharma, and F. Durst. Pressure-driven diffusive gas flows in micro-channels: from the knudsen to the continuum regimes. Microfluidics and Nanofluidics, 6: 679-692, (2009).

DOI: 10.1007/s10404-008-0344-y

Google Scholar

[5] C. Duan, C. Wang, and Q. Xie. Review article: Fabrication of nanofluidic devices. Biomicrofluidics, 7 (2): 026501, 2013. doi: http: /dx. doi. org/10. 1063/1. 4794973. URL http: /scitation. aip. org/content/aip/journal/bmf/7/2/10. 1063/1. 4794973.

DOI: 10.1063/1.4794973

Google Scholar

[6] M. Fichman and G. Hetsroni. Viscosity and slip velocity in gas flow in microchannels. Physics of fluids, (2005).

DOI: 10.1063/1.2141960

Google Scholar

[7] W. H. Fissell, A. T. Conlisk, S. Datta, J. M. Magistrelli, J. T. Glass, A. J. Fleischmanand, and S. Roy. High knudsen number fluid flow at near-standard temperature and pressure conditions using precision nanochannels. Microfluidics and Nanofluidics, 10(2): 425-433, 2011. ISSN 1613-4982. doi: 10. 1007/s10404-010-0682-4. URL http: /dx. doi. org/10. 1007/s10404-010-0682-4.

DOI: 10.1007/s10404-010-0682-4

Google Scholar

[8] A. J. Francis and A. L. Garcia. The direct simulation monte carlo method. Comput. Phys., 11(6): 588-593, January 1997. ISSN 0894-1866. doi: 10. 1063/1. 168619. URL http: /dx. doi. org/10. 1063/1. 168619.

DOI: 10.1063/1.168619

Google Scholar

[9] S. Gruener and P. Huber. Knudsen Diffusion in Silicon Nanochannels. Physical Review Letters, 100 (6): 064502, February (2008).

DOI: 10.1103/physrevlett.100.064502

Google Scholar

[10] T. Grzebyk and A. Z. Drzazga. Vacuum micro devices. Bulletin of the Polish academy of science, Technical sciences, 60, (2012).

DOI: 10.2478/v10175-012-0004-y

Google Scholar

[11] S. Karakitsiou, S. D. Eder, B. Holst, and A. C. Hoffmann. Design, development and testing of appa- ratus to study gas diffusion in nanochannels. TechConnect Briefs 2015, pages 214-217, (2015).

Google Scholar

[12] S. Karakitsiou, B. Holst, and A. C. Hoffmann. Apparatus for measuring pressure-driven transport through channels at high knudsen numbers. Review of Scientific Instruments, 87(12): 125104, 2016. doi: 10. 1063/1. 4963695. URL http: /dx. doi. org/10. 1063/1. 4963695.

DOI: 10.1063/1.4963695

Google Scholar

[13] M. Knudsen. Die gesetze der molekularst"omung und der inneren reibungsstr"omung der gase dur r"ohen. Annalen der Physik, 333: 75-130, (1909).

DOI: 10.1002/andp.19093330106

Google Scholar

[14] S. Li, Z. Xu, M . Aaron, D. J Burns, G. Fuand, M. Dirckx, V. Shilpiekandula, X. Chen, N. C. Nayak, E. W Eehern, S. Y. Yoon, Z. P. Fang, K. Y. Toumi, D. Hardt, S. B Tor, C. YYue, and J. H. Chun. Review of production of microfluidic devices: material, manufacturing and metrology. Proc. SPIE, 6993: 69930F-69930F-12, 2008. doi: 10. 1117/12. 781942. URL http: /dx. doi. org/10. 1117/12. 781942.

DOI: 10.1117/12.781942

Google Scholar

[15] A. Munjiza, E. Rougier, and N. W. M. John. Discrete element method for molecular scale visualiza- tion of micro-flows. Journal of Flow Visualization and Image Processing, 14: 17-34, (2007).

DOI: 10.1615/jflowvisimageproc.v14.i1.20

Google Scholar

[16] P. Norberg, A. Ackelid, I. Lundstr¨ om, and L. G Petersson. On the transient gas flow through catalyti- cally active micromachined channels. Journal of Applied Physics, 81: 2094-2100, (1997).

DOI: 10.1063/1.364261

Google Scholar

[17] W. G. Pollard and R. D. Present. On gaseous self-diffusion in long capillary tubes. Phys. Rev., 73: 762-774, 1948a.

DOI: 10.1103/physrev.73.762

Google Scholar

[18] W. G. Pollard and R. D. Present. On gaseous self-diffusion in long capillary tubes. Physical Review, 73: 762-774, 1948b.

DOI: 10.1103/physrev.73.762

Google Scholar

[19] A. Roth. Vacuum Technology. Elsevier Science B. V, Amsterdam, (1990).

Google Scholar

[20] S. Roy, R . Raju, H. F. Chuang, B. A. Cruden, and M. Meyyappan. Modeling gas flow through mi- crochannels and nanopores. Journal of Applied Physics, 93(8): 4870-4879, 2003. ISSN 0021- 8979. doi: 10. 1063/1. 1559936.

DOI: 10.1063/1.1559936

Google Scholar

[21] S. A. Tison. Experimental data and theoretical modeling of gas flows through metal capillary leaks. Vacuum, 44(1112): 1171 - 1175, 1993. ISSN 0042-207X. doi: http: /dx. doi. org/10. 1016/ 0042-207X(93)90342-8. URL http: /www. sciencedirect. com/science/article/pii/0042207X93903428. Special Issue 7th International School on Vacuum, Electron and Ion Technologies.

DOI: 10.1016/0042-207x(93)90342-8

Google Scholar

[22] T. Veijola. End effects of rare gas flow in short channels and squeezed-film dampers. Technical proceedings of the 2002 international conference on modeling and simulations of microsystems, 1: 104-107, (2002).

Google Scholar

[23] A. E. Velasco, S. G. Friedman, M. Pevarnik, Z . S Siwy, and P. Taborek. Pressure-driven flow through a single nanopore. Phys. Rev. E, 86: 025302, Aug 2012. doi: 10. 1103/PhysRevE. 86. 025302. URL http: /link. aps. org/doi/10. 1103/PhysRevE. 86. 025302.

DOI: 10.1103/physreve.86.025302

Google Scholar