Sulfonic Acid Functionalized Magnetite Nanoporous-KIT-6 for Removal of Methyl Green from Aqueous Solutions

Article Preview

Abstract:

The sulfonic acid-functionalized KIT-6 magnetite mesoporous silica nanoparticles (Fe3O4@SiO2@KIT-6-SO3H NPs) were prepared as an adsorbent and used for the removal of methyl green from aqueous solutions. Characterization of the obtained adsorbent was done by FT-IR, SEM and EDX instruments. According to the experimental results, about 96.4 % of dye was removed from aqueous solutions at the adsorbent amount of 3.2 g L-1 at pH = 3 and ionic strength = 0 during 10 min. The kinetic results indicated that the pseudo-second-order kinetic model was the best model for describing the adsorption kinetic ( = 0.9999). The isotherm analysis demonstrated that the equilibrium data were well fitted to the Freundlich isotherm model, showing a multilayer adsorption of the dye on the adsorbent surface. The maximum adsorption capacity for methyl green was obtained 196 mg g-1. Furthermore, the Fe3O4@SiO2-KIT-6-SO3H NPs could be simply recovered by external magnet and it exhibited recyclability and reusability for six cycles. The results showed that the Fe3O4@SiO2-KIT-6-SO3H NPs are appropriate adsorbent for removal of methyl green from real wastewater samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-70

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Bhattacharyya, S.K. Ray, Adsorption of industrial dyes by semi-IPN hydrogels of Acrylic copolymers and sodium alginate, J. Ind. Eng. Chem. 22 (2015) 92-102.

DOI: 10.1016/j.jiec.2014.06.029

Google Scholar

[2] V.S. Mane, I.D. Mall, V.C. Srivastava, Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution, Dyes Pigments. 73 (2007) 269-278.

DOI: 10.1016/j.dyepig.2005.12.006

Google Scholar

[3] P. Hadi, J. Guo, J. Barford, G. McKay, Multilayer dye adsorption in activated carbons-facile approach to exploit vacant sites and interlayer charge interaction, Environ. Sci. Technol. 50 (2016) 5041-5049.

DOI: 10.1021/acs.est.6b00021

Google Scholar

[4] F. Keyhanian, S. Shariati, M. Faraji, M. Hesabi, Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions, Arab J. Chem. 9 (2016) S348-S354.

DOI: 10.1016/j.arabjc.2011.04.012

Google Scholar

[5] M. Ehyaee, F. Safa, S. Shariati, Magnetic nanocomposite of multi-walled carbon nanotube as effective adsorbent for methyl violet removal from aqueous solutions: Response surface modeling and kinetic study, Kore J. Chem. Eng. 34(4) (2017).

DOI: 10.1007/s11814-016-0353-6

Google Scholar

[6] L. Yao, L. Zhang, R. Wang, S. Chou, Z. Dong, A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes, J. Hazard. Mater. 301 (2016) 462-470.

DOI: 10.1016/j.jhazmat.2015.09.027

Google Scholar

[7] M. Shirzad-Siboni, A. Khataee, S. W. Joo, Kinetics and equilibrium studies of removal of an azo dye from aqueous solution by adsorption onto scallop, J. Indust. Eng. Chem. 20 (2014) 610-615.

DOI: 10.1016/j.jiec.2013.05.023

Google Scholar

[8] S. Mokhtari, H. Faghihian, Modification of activated carbon by 2, 6-diaminopyridine for separation of Hg2+ from aqueous solutions, J. Environ. Chem. Eng. 3 (2015) 1662-1668.

DOI: 10.1016/j.jece.2015.06.002

Google Scholar

[9] D. Shao, G. Hou, J. Li, T. Wen, X. Ren, X. Wang, PANI/GO as a super adsorbent for the selective adsorption of uranium, Chem. Eng. J. 255 (2014) 604-612.

DOI: 10.1016/j.cej.2014.06.063

Google Scholar

[10] R. Ansari Khalkhali, R. Omidvari, Adsorption of mercuric ion from aqueous solutions using activated carbon, Pol. J. Environ. Stud. 14 (2005) 185-188.

Google Scholar

[11] A. R. Tehrani-Bagha, M. Gharagozlou, F. Emami, Catalytic wet peroxide oxidation of a reactive dye by magnetic copper ferrite nanoparticles, J. Environ. Chem. Eng. 4(2) (2016) 1530-1536.

DOI: 10.1016/j.jece.2016.02.014

Google Scholar

[12] Y. Pan, J. Wang, C. Sun, X. Liu, H. Zhang, Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: a lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples, J. Hazard. Mater. 309 (2016).

DOI: 10.1016/j.jhazmat.2016.02.004

Google Scholar

[13] B. Saha, S. Das, J. Saikia, G. Das, Preferential and enhanced adsorption of different dyes on ironoxide nanoparticles: a comparative study, J. Phys. Chem. C 115 (2011) 8024-8033.

DOI: 10.1021/jp109258f

Google Scholar

[14] S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66 (2004) 319-329.

DOI: 10.1016/j.aquatox.2003.09.008

Google Scholar

[15] M. Khabazipour, S. Shariati, Synthesis and characterization of amine functionalized mesoporous magnetite nanoparticles having environmental applications. Chem. Solid Mater. 2 (2014) 11-19.

Google Scholar

[16] A. Alizadeh, M. M. Khodaei, M. Beygzadeh, D. Kordestani, M. Feyzi, Biguanide-functionalized Fe3O4/SiO2 magnetic nanoparticles: an efficient heterogeneous organosuperbase catalyst for various organic transformations in aqueous media, Bull. Korean Chem. Soc. 33 (2012).

DOI: 10.5012/bkcs.2012.33.8.2546

Google Scholar

[17] M. Khabazipour, S. Shariati, F. Safa, SBA and KIT-6 mesoporous silica magnetite nanoparticles: Synthesis and characterization. Synth. React. Inorg. M. 46(5) (2016) 759-765.

DOI: 10.1080/15533174.2014.989583

Google Scholar

[18] H. Hafizi, A. Najafi Chermahini, M. Saraji, G. Mohammadnezhad, The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica, Chem. Eng. J. 294 (2016) 380-388.

DOI: 10.1016/j.cej.2016.02.082

Google Scholar

[19] S. Shariati, M. Golshekan, Optimization of Cloud Point Extraction of Copper with Neocuproine from Aqueous Solutions Using Taguchi Fractional Factorial Design, J. Anal. Chem. 2014, 69, 248-254.

DOI: 10.1134/s1061934814030125

Google Scholar

[20] S. Shariati, M. Faraji, Y. Yamini, A. A. Rajabi, Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270 (2011) 160-165.

DOI: 10.1016/j.desal.2010.11.040

Google Scholar

[21] X. Qiu, N. Li, X. Ma, S. Yang, Q. Xu, H. Li, J. Lu, Facile preparation of acrylic ester-based crosslinked resin and its adsorption of phenol at high concentration, J. Environ. Chem. Eng. 2 (2014) 745-751.

DOI: 10.1016/j.jece.2013.11.016

Google Scholar

[22] M. B. Gholivand, Y. Yamini, M. Dayeni, S. Seidi, E. Tahmaseb, Adsorptive removal of alizarin red-S and alizarin yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles. J. Environ. Chem. Eng. 3 (2015) 529-540.

DOI: 10.1016/j.jece.2015.01.011

Google Scholar

[23] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.

DOI: 10.1021/ja02242a004

Google Scholar

[24] E. Bulut, M. Özacar, İ. A. Şengil, Equilibrium and kinetic data and process design for adsorption of congo red onto bentonite, J. Hazard. Mater. 154 (2008) 613-622.

DOI: 10.1016/j.jhazmat.2007.10.071

Google Scholar

[25] S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste, Bioresour. Technol. 97 (2006) 1618-1625.

DOI: 10.1016/j.biortech.2005.08.001

Google Scholar

[26] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (1916) 2221-2295.

DOI: 10.1021/ja02268a002

Google Scholar

[27] N. Kannan, M. M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes Pigments. 51 (2001) 25-40.

DOI: 10.1016/s0143-7208(01)00056-0

Google Scholar

[28] M. A. K. M. Hanafiah, W. S. W. Ngah, S. H. Zolkafly, L. C. Teong, Z. A. A. Majid, Acid blue 25 adsorption on base treated (shorea dasyphylla) sawdust: kinetic, isotherm, thermodynamic and spectroscopic analysis, J. Environ. Sci. 24 (2012) 261-268.

DOI: 10.1016/s1001-0742(11)60764-x

Google Scholar

[29] H. Freundlich, Über die Adsorption in Lösungen, W. Engelmann, (1906).

Google Scholar

[30] L. Fan, Y. Zhang, X. Li, C. Luo, F. Lu, H. Qiu, Removal of alizarin red from water environment using magnetic chitosan with alizarin red as imprinted molecules, Colloids Surf. B: Biointerfaces 91 (2012) 250-257.

DOI: 10.1016/j.colsurfb.2011.11.014

Google Scholar

[31] N. Atar, A. Olgun, S. Wangb, Adsorption of Cadmium (II) and Zinc (II) on Boron Enrichment Process Waste in Aqueous Solutions: Batch and Fixed-Bed System Studies. Chem. Eng, 192 (2012), 1-7.

DOI: 10.1016/j.cej.2012.03.067

Google Scholar

[32] P. Sharma, B. K. Saikia, M. R. Das, Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: Kinetics, isotherm and thermodynamic parameters, Colloids and Surfaces A: Physicochem. 457(1) (2014).

DOI: 10.1016/j.colsurfa.2014.05.054

Google Scholar

[33] P. Sharma, M. R. Das, Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. J. Chem. Eng. Data. 58(1) (2013) 151-158.

DOI: 10.1021/je301020n

Google Scholar

[34] G. Rytwo, S. Nir, M. Crespin, L. Margulies, Adsorption and Interactions of Methyl Green with Montmorillonite and sepiolite. J. Colloid Interface Sci. 222 (2000) 12-19.

DOI: 10.1006/jcis.1999.6595

Google Scholar

[35] M. Bahgat, A.A. Farghali, W.E. Rouby, M. Khedr, M.Y.M. Ahmed, Adsorption of methyl green dye onto multiwalled carbon nanotubes decorated with Ni nanoferrite. Appl. Nanosci., 3 (2013) 251–261.

DOI: 10.1007/s13204-012-0127-3

Google Scholar

[36] S. Xu, J.L. Wang, R. Wu, J. Wang, H. Li, Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chem. Eng. J. 117 (2006) 161-167.

DOI: 10.1016/j.cej.2005.12.012

Google Scholar