INVITED PAPER: Agrifood Nanotechnology: A Tiny Revolution in Food and Agriculture

Article Preview

Abstract:

Nanotechnology focuses on special properties of a material which emerge from nanometer size—is becoming one of the most promising scientific fields of research in decades. The realisation that the nano-scale has certain properties needed to solve important biomedical challenges and cater to unmet biomedical needs is driving nano-biosystem research. Proper nutrition and a clean environment promote human health. Nanotechnologies are only used to a limited extent at the moment for achieving these aims although it has the potential to revolutionize agriculture and food systems. We will see increasing uses of tools and techniques developed by nanotechnology to detect carcinogenic pathogens and biosensors for improved and contamination free food and agricultural products. This article will review some of the current nanotechnology research that is applicable to agriculture and food technology and project what the future will bring to the newly emerging field of Agrifood Nanotechnology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-14

Citation:

Online since:

June 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Royal Society and Royal Academy of Engineering, Nanoscience and nanotechnologies: Opportunities and uncertainties, Royal Society London (2004).

Google Scholar

[2] C. I. Moraru, C. P. Panchapakesan, Q. Huang, P. Takhistov, S. Liu, J. L. Kokini, Nanotechnology: A New Frontier in Food Science, FoodTechnology 57 (2003) 24-29.

Google Scholar

[3] S. A. Ross, P. R. Srinivas, A. J. Clifford, S. C. Lee, M. A. Philbert, R. L. Hettich, New technologies for nutrition research, J. Nutr. 134 (2004) 681-685.

DOI: 10.1093/jn/134.3.681

Google Scholar

[4] Ottawa, Down on the farm. The impact of nano-scale technologies on food and agriculture, ETC Group (2004).

Google Scholar

[5] H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods, Food Technology 60 (2006) 30-36.

Google Scholar

[6] L. Goldman, C. Coussens: Implications of nanotechnology for environmental health research. Washington D.C.: Institute of Medicine (The National Academies Press, Washington D.C. 2005).

Google Scholar

[7] T. Masciangioli, W. X. Zhang, Environmental technologies at the nanoscale, Environ. Sci. Technol. 37 (2003) 102A-108A.

DOI: 10.1021/es0323998

Google Scholar

[8] R. A. L. Jones, The future of nanotechnology, (2004) (http: /physicsweb. org/articles/world/17/8/7, accessed on 24th feb. 2008).

Google Scholar

[9] V. J. Morris, Is nanotechnology going to change the future of food technology? Int. Rev. Food Sci. Technol. 3 (2005) 16-18.

Google Scholar

[10] H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods, Food Technol. 60 (2006) 30-36.

Google Scholar

[11] D. Charych, Q. Cheng, A. Reichert, G. Kuziemko, N. Stroh, J. Nagy, W. Spevak, R. Stevens, A ‗litmus test'for molecular recognition using artificial membranes, Chem. Biol. 3 (1996) 113.

DOI: 10.1016/s1074-5521(96)90287-2

Google Scholar

[12] G. I. Imafidon, A. M. Spanier, Unraveling the secret of meat flavor, Trends Food Sci. Technol. 5 (1994) 315-321.

DOI: 10.1016/0924-2244(94)90182-1

Google Scholar

[13] T. Haruyama, Micro- and nanobiotechnology for biosensing cellular responses, Adv. Drug Delivery Rev. 55 (2003) 393-401.

DOI: 10.1016/s0169-409x(02)00224-7

Google Scholar

[14] M. J. Lawrence, G. D. Rees,. Microemulsion-based media as novel drug delivery systems. Adv. Drug Delivery Rev. 45(2000) 89-121.

DOI: 10.1016/s0169-409x(00)00103-4

Google Scholar

[15] M. Golding, A. Sein, Surface rheology of aqueous casein-monoglyceride dispersions, Food Hydrocoll. 18 (2004) 451-461.

DOI: 10.1016/j.foodhyd.2003.08.003

Google Scholar

[16] N. Garti, M. Shevachman, A. Shani, Solubilization of lycopene in jojoba oil microemulsion, J. Am. Oil Chem. Soc. 81(2004) 873-877.

DOI: 10.1007/s11746-004-0994-4

Google Scholar

[17] J. Flanagan, H. Singh, Microemulsions: A potential delivery system for bioactives in food, Crit. Rev. Food Sci. Nutr. 46 (2006) 221-237.

DOI: 10.1080/10408690590956710

Google Scholar

[18] D. J. McClements, E. A. Decker, Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (2000) 1270-1282.

DOI: 10.1111/j.1365-2621.2000.tb10596.x

Google Scholar

[19] Y. C. Chang, D. G. H. Chen, Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan conjugated magnetic nano-adsorbent, Macromol. Biosci. 5 (2005) 254-261.

DOI: 10.1002/mabi.200400153

Google Scholar

[20] A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[21] C. Ritzoulis, N. Scoutaris, K. Papademetriou, S. Stavroulias, C., Panayiotou,. Milk proteinbased emulsion gels for bone tissue engineering, Food Hydrocolloids 19 (2005) 575-581.

DOI: 10.1016/j.foodhyd.2004.10.021

Google Scholar

[22] T. Riley, T. Govender, S. Stolnik, C. D. Xiong, M. C. Garnett, L. Illum, S. S. Davis, Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles, Colloids Surf., B 16 (1999) 147-159.

DOI: 10.1016/s0927-7765(99)00066-1

Google Scholar

[23] V. Morillon, F. Debeaufort, G. Blond, M. Capelle, A. Voilley, Factors affecting the moisture permeability of lipid-based edible films: A review, Crit. Rev. Food Sci. Nutr. 42 (2002) 67-89.

DOI: 10.1080/10408690290825466

Google Scholar

[24] A. Cagri, Z. Ustunol, E. T. Ryser, Antimicrobial edible films and coatings, J. Food Protect. 67 (2004) 833-848.

DOI: 10.4315/0362-028x-67.4.833

Google Scholar

[25] D. S. Cha, M. S. Chinnan, Biopolymer-based antimicrobial packaging: Review. Crit. Rev. Food Sci. Nutr. 44 (2004) 223-237.

Google Scholar

[26] J. W. Rhim, Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials, Food Sci. Biotech. 13 (2004)528-535.

Google Scholar

[27] H. J. Park, Development of advanced edible coatings for fruits, Trends Food Sci. Technol. 10 (1999) 254-260.

Google Scholar

[28] D. J. McClements, E. A. Decker, J., Weiss, inventors; University of Massachussetts, assignee. 2005. UMA 05-27: Novel procedure for creating nanolaminated edible films and coatings, U.S. patent application.

Google Scholar

[29] J. F. Graveland-Bikker, C. G. de Kruif, Self-assembly of hydrolysed α-lactalbumin into nanotubes, FEBS J. 272(Suppl 1)(2005) 550.

Google Scholar

[30] J. F. Graveland-Bikker, C. G. de Kruif, Unique milk protein-based nanotubes: Food and nanotechnology meet, Trends Food Sci. Technol. 17 (2006) 196-203.

DOI: 10.1016/j.tifs.2005.12.009

Google Scholar

[31] J. F. Graveland-Bikker., G. Fritz, O. Glatter, Growth and structure of α-lactalbumin nanotubes, J. Appl. Crystallogr. 39 (2006) 180-184.

DOI: 10.1107/s0021889805043244

Google Scholar

[32] J. F. Graveland-Bikker, I. A. T. Schaap, C. F. Schmidt, C. G. de Kruif, Structural and mechanical study of a self assembling protein nanotube, Nano Lett. 6 (2006) 616-621.

DOI: 10.1021/nl052205h

Google Scholar

[33] J. Han, J. Fu, R. B. Schoch, Molecular sieving using nanofilters: Past, present and future, Lab Chip. 8 (2008) 23-33.

DOI: 10.1039/b714128a

Google Scholar

[34] L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camiileri, C. J. Humphreys, Electrophoretic manipulation of single DNA molecule in nanofabricated capillaries, Lab Chip. 4 (2004) 225229.

DOI: 10.1039/b312592k

Google Scholar

[35] N. C. Seeman, DNA in a material world, Nature. 421 (2004) 427-431.

Google Scholar

[36] Ranjana Wangvipula, -Thailand embarks on the nano path to better rice and silk, ‖ Bangkok Post, Jan. 21, 2004. Available on internet: http: /www. smalltimes. com/document_display. cfm?document_id=7266.

Google Scholar

[37] P. Roblin, D. A. Barrow, Microsystems technology for remote monitoring and control in sustainable agricultural practices, J. Environ. Monit. 2 (2000) 385-392.

DOI: 10.1039/b003381m

Google Scholar

[38] M. Askari, J. P. Alarie, M. Moreno-Bondi, T. Vo-Dinh, Application of an Antibody Biochip for p.53 Detection and Cancer Diagnosis, Biotechnology Progress. 17 (2001) 543-552.

DOI: 10.1021/bp010008s

Google Scholar

[39] D. L. Stokes, G. D. Griffin, T. Vo-Dinh, Detection of E. Coli using a microfluidicsbased antibody biochip detection system, Fresenius Journal of Analytical Chemistry, 369 (2001) 295301.

DOI: 10.1007/s002160000660

Google Scholar

[40] T. Vo-Dinh, Development of a DNA Biochip: Principle and Application, Sensors and Actuators, B51 (1999) 52-59.

Google Scholar

[41] M. D. Eggers, High-throughput microarray technology. Innovations in Pharmaceutical Technology, 6 (2000) 36-44.

Google Scholar

[42] T. Vo-Dinh, J. P. Alarie, N. R. Isola, D. Landis, A. L. Wintenberg, M. N. Ericson, DNA Biochip Using Phototransitor Integrated Circuit, Analytical Chemistry, 71 (1999) 358-363.

DOI: 10.1021/ac980043m

Google Scholar

[43] T. Vo-Dinh, B. M. Cullum, Biosensors and Biochips, Advances in Biological and Medical Diagnostics, Fresenius Journal of Analytical Chemistry, 366 (2000) 540-551.

DOI: 10.1007/s002160051549

Google Scholar

[44] T. Vo-Dinh, M. Askari, Microarrays and Biochips: Applications and Potential in Genomics and Proteomics, Journal of Current Geonomics, 2 (2001) 399-415.

DOI: 10.2174/1389202013350724

Google Scholar

[45] T. Vo-Dinh, B. M. Cullum, D. L. Stokes, Nanosensors and biochips: frontiers in biomolecular diagnostics, Sensors and Actuators, B74 (2001) 2-11.

DOI: 10.1016/s0925-4005(00)00705-x

Google Scholar

[46] R. P. Kulkarni, Nano-Bio-Genesis: tracing the rise of nanotechnology and nanobiotechnology as big science,. Journal of Biomedical Discovery and Collaboration. 2 (2007) 3.

DOI: 10.1186/1747-5333-2-3

Google Scholar

[47] C. A. Lévesque, Molecular methods for detection of plant pathogens-What is the future? Can. J. Plant Pathol. 24 (2001) 333-336.

Google Scholar

[48] J. Schulte, 2005 Nanotechnology: Global Strategies, Industry Trends and Applications. Wiley, John & Sons, Incorporated. Hoboken, NJ.

Google Scholar

[49] E. Ricca, S. M. Cutting, Emerging applications of bacterial spores in nanobiotechnology. J. Nanobiotech. (2003) 1-10.

Google Scholar

[50] G. B Sukhorukov, H. Mohwald, Multifunctional cargo systems for biotechnology. Trends in Biotechnology 25(3) (2007) 93-98.

DOI: 10.1016/j.tibtech.2006.12.007

Google Scholar

[51] N. P. Praetorius, T. K. Mandal, Engineered Nanoparticles in Cancer Therapy. Recent Patents on Drug Delivery & Formulation, 1 (2007) 37-51.

DOI: 10.2174/187221107779814104

Google Scholar

[52] C. Alexiou, R. Jurgons, C. Seliger, O. Brunke, H. Iro, S. Odenbach, Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res. 27(4A) (2007)2019-(2022).

Google Scholar

[53] C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner, C. Bergemann, E. Huenges, T. Nawroth, W. Arnold, F.G. Parak, Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 35(5) (2006) 446-50.

DOI: 10.1007/s00249-006-0042-1

Google Scholar

[54] C. Alexiou, R. Jurgons, R. J. Schmid, C. Bergemann, J. Henke, W. Erhardt, E. Huenges, F. Parak, Magnetic drug targeting-biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target. 11(3) (02003) 139-49.

DOI: 10.1080/1061186031000150791

Google Scholar

[55] G. Y. J. Chen, S. Q. Yao, Lighting up cancer cells with -dots‖, The Lancet 364 (2004) 20012003.

Google Scholar

[56] S. D. Patil, D. G. Rhodes, D. J. Burgess, DNA-based Therapeutics and DNA Delivery Systems: A Comprehensive Review. The AAPS Journal 7 (1) (2005) E61-E77.

DOI: 10.1208/aapsj070109

Google Scholar

[57] K. K. Jain, Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat. 4 (4) (2005)407-416.

DOI: 10.1177/153303460500400408

Google Scholar

[58] P. L. Brannon, J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56 (11) (2004)1649-1659.

DOI: 10.1016/j.addr.2004.02.014

Google Scholar

[59] N. R. Scott, Nanotechnology and animal health. Rev. sci. tech. Off. int. Epiz. 24 (1) (2005) 425-432.

Google Scholar

[60] M. C. Roco, Nanotechnology: convergence with modern biology and medicine. Current Opinion in Biotechnology 14 (2003) 337-346.

DOI: 10.1016/s0958-1669(03)00068-5

Google Scholar

[61] W. J. Kress, K. J. Wurdack, E. A. Zimmer, L. A. Weigt, D. H. Janzen, Use of DNA barcodes to identify flowering plants. PNAS 102 (23) (2005) 8369-8374.

DOI: 10.1073/pnas.0503123102

Google Scholar

[62] L. Clime, S. Y. Zhao, P. Chen, F. Normandin, H. Roberge, T. Veres, The interaction field in arrays of ferromagnetic barcode nanowires. Nanotechnology 18 (2007) 435709-435715.

DOI: 10.1088/0957-4484/18/43/435709

Google Scholar

[63] J. M. Nam, C. S. Thaxton, C. A. Mirkin, Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science 301(5641) (2003)1884 - 1886.

DOI: 10.1126/science.1088755

Google Scholar

[64] B. C. Meyers, D. W. Galbraith, T. Nelson, V. Agrawal, Methods for Transcriptional Profiling in Plants. Be Fruitful and Replicate. Plant Physiology 135 (2004) 637-652.

DOI: 10.1104/pp.104.040840

Google Scholar

[65] J. Weiss, P. Takhistov, J. D. McClements, Functional materials in food nanotechnology. Journal of Food Science 71(2006) R107-R116.

DOI: 10.1111/j.1750-3841.2006.00195.x

Google Scholar

[66] M. Siegrist, N. Stampfli, H. Kastenholz, C. Keller, Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51 (2008) 283- 290.

DOI: 10.1016/j.appet.2008.02.020

Google Scholar

[67] A. Helland, H. Kastenholz, A. Thidell, P. Arnfalk, K. Deppert, Nanoparticulate materials and regulatory policy in Europe: An analysis of stakeholder perspectives. Journal of Nanoparticle Research, 8 (2006) 709-719.

DOI: 10.1007/s11051-006-9096-3

Google Scholar

[68] A. ElAmin, Nanocantilevers studied for quick pathogen detection. (2006), Available from http: /www. foodproductiondaily-usa. com/news/ng. asp?id¼70159.

Google Scholar

[69] Y. Li, Y. D. Tseng, S. Y. Kwon, L. Despaux, J. S. Bunch, P. L. Mceuen, D. Luo, Controlled assembly of dendrimer-like DNA. Nature Materials, 3 (2004) 38-42.

DOI: 10.1038/nmat1045

Google Scholar

[70] S. Roach, Instant, portable, simultaneous pathogen inspection. (2006), Available from http: /www. foodproductiondaily-usa. com/news/ng. asp?id¼69938.

Google Scholar

[71] C. F. Chau, S. H. Wu, G. C. Yen, The development of regulations for food nanotechnology. Trends in Food Science & Technology 18 (2007) 269-280.

DOI: 10.1016/j.tifs.2007.01.007

Google Scholar

[72] F. S. Buentello, D. L. Persad, E. B. Court, D. K. Martin, A. S. Daar, P. A. Singer, Nanotechnology and the Developing World. PLoS Medicine (2)5 (2005) 383-386.

DOI: 10.1371/journal.pmed.0020097

Google Scholar

[73] V. J. Morris, Is nanotechnology going to change the future of food technology? Int. Rev. Food Sci. Technol. 3 (2005) 16-18.

Google Scholar

[74] S. Mannino, M. Scampicchio, Nanotechnology and Food Quality Control. Veterinary Research Communications, 31(Suppl. 1) (2007) 149-151.

DOI: 10.1007/s11259-007-0081-9

Google Scholar

[75] T. Masciangioli, W. X. Zhang, Environmental technologies at the nanoscale. Environ. Sci. Technol. 37(5) (2003) 102A-108A.

DOI: 10.1021/es0323998

Google Scholar

[76] W. X. Zhang, B., Karn Nanoscale environmental science and technology: challenges and opportunities. Environ. Sci. Technol. 39(5) (2005) 94A-95A.

DOI: 10.1021/es053197+

Google Scholar

[77] Nanotechnology helps solve the world's energy problems. Nanoforum; 4-(2004).

Google Scholar

[78] A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer, V. I. Klimov, Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers. Nano. Lett. 5 (6) (2005).

DOI: 10.1021/nl050384x

Google Scholar

[79] M. Stockman, From nano-optics to street lights. Nat. Mater. 3(7) (2004) 423-424.

Google Scholar

[80] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, A stable quasi-solidstate dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2(6) (2003) 402-407.

DOI: 10.1038/nmat904

Google Scholar

[81] R. D. Schaller, V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92(18) (2004)186601.

DOI: 10.1103/physrevlett.92.186601

Google Scholar

[82] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van-Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4 (5) (2005)366-377.

DOI: 10.1038/nmat1368

Google Scholar