[1]
Royal Society and Royal Academy of Engineering, Nanoscience and nanotechnologies: Opportunities and uncertainties, Royal Society London (2004).
Google Scholar
[2]
C. I. Moraru, C. P. Panchapakesan, Q. Huang, P. Takhistov, S. Liu, J. L. Kokini, Nanotechnology: A New Frontier in Food Science, FoodTechnology 57 (2003) 24-29.
Google Scholar
[3]
S. A. Ross, P. R. Srinivas, A. J. Clifford, S. C. Lee, M. A. Philbert, R. L. Hettich, New technologies for nutrition research, J. Nutr. 134 (2004) 681-685.
DOI: 10.1093/jn/134.3.681
Google Scholar
[4]
Ottawa, Down on the farm. The impact of nano-scale technologies on food and agriculture, ETC Group (2004).
Google Scholar
[5]
H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods, Food Technology 60 (2006) 30-36.
Google Scholar
[6]
L. Goldman, C. Coussens: Implications of nanotechnology for environmental health research. Washington D.C.: Institute of Medicine (The National Academies Press, Washington D.C. 2005).
Google Scholar
[7]
T. Masciangioli, W. X. Zhang, Environmental technologies at the nanoscale, Environ. Sci. Technol. 37 (2003) 102A-108A.
DOI: 10.1021/es0323998
Google Scholar
[8]
R. A. L. Jones, The future of nanotechnology, (2004) (http: /physicsweb. org/articles/world/17/8/7, accessed on 24th feb. 2008).
Google Scholar
[9]
V. J. Morris, Is nanotechnology going to change the future of food technology? Int. Rev. Food Sci. Technol. 3 (2005) 16-18.
Google Scholar
[10]
H. Chen, J. Weiss, F. Shahidi, Nanotechnology in nutraceuticals and functional foods, Food Technol. 60 (2006) 30-36.
Google Scholar
[11]
D. Charych, Q. Cheng, A. Reichert, G. Kuziemko, N. Stroh, J. Nagy, W. Spevak, R. Stevens, A ‗litmus test'for molecular recognition using artificial membranes, Chem. Biol. 3 (1996) 113.
DOI: 10.1016/s1074-5521(96)90287-2
Google Scholar
[12]
G. I. Imafidon, A. M. Spanier, Unraveling the secret of meat flavor, Trends Food Sci. Technol. 5 (1994) 315-321.
DOI: 10.1016/0924-2244(94)90182-1
Google Scholar
[13]
T. Haruyama, Micro- and nanobiotechnology for biosensing cellular responses, Adv. Drug Delivery Rev. 55 (2003) 393-401.
DOI: 10.1016/s0169-409x(02)00224-7
Google Scholar
[14]
M. J. Lawrence, G. D. Rees,. Microemulsion-based media as novel drug delivery systems. Adv. Drug Delivery Rev. 45(2000) 89-121.
DOI: 10.1016/s0169-409x(00)00103-4
Google Scholar
[15]
M. Golding, A. Sein, Surface rheology of aqueous casein-monoglyceride dispersions, Food Hydrocoll. 18 (2004) 451-461.
DOI: 10.1016/j.foodhyd.2003.08.003
Google Scholar
[16]
N. Garti, M. Shevachman, A. Shani, Solubilization of lycopene in jojoba oil microemulsion, J. Am. Oil Chem. Soc. 81(2004) 873-877.
DOI: 10.1007/s11746-004-0994-4
Google Scholar
[17]
J. Flanagan, H. Singh, Microemulsions: A potential delivery system for bioactives in food, Crit. Rev. Food Sci. Nutr. 46 (2006) 221-237.
DOI: 10.1080/10408690590956710
Google Scholar
[18]
D. J. McClements, E. A. Decker, Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (2000) 1270-1282.
DOI: 10.1111/j.1365-2621.2000.tb10596.x
Google Scholar
[19]
Y. C. Chang, D. G. H. Chen, Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan conjugated magnetic nano-adsorbent, Macromol. Biosci. 5 (2005) 254-261.
DOI: 10.1002/mabi.200400153
Google Scholar
[20]
A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.
DOI: 10.1016/j.biomaterials.2004.10.012
Google Scholar
[21]
C. Ritzoulis, N. Scoutaris, K. Papademetriou, S. Stavroulias, C., Panayiotou,. Milk proteinbased emulsion gels for bone tissue engineering, Food Hydrocolloids 19 (2005) 575-581.
DOI: 10.1016/j.foodhyd.2004.10.021
Google Scholar
[22]
T. Riley, T. Govender, S. Stolnik, C. D. Xiong, M. C. Garnett, L. Illum, S. S. Davis, Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles, Colloids Surf., B 16 (1999) 147-159.
DOI: 10.1016/s0927-7765(99)00066-1
Google Scholar
[23]
V. Morillon, F. Debeaufort, G. Blond, M. Capelle, A. Voilley, Factors affecting the moisture permeability of lipid-based edible films: A review, Crit. Rev. Food Sci. Nutr. 42 (2002) 67-89.
DOI: 10.1080/10408690290825466
Google Scholar
[24]
A. Cagri, Z. Ustunol, E. T. Ryser, Antimicrobial edible films and coatings, J. Food Protect. 67 (2004) 833-848.
DOI: 10.4315/0362-028x-67.4.833
Google Scholar
[25]
D. S. Cha, M. S. Chinnan, Biopolymer-based antimicrobial packaging: Review. Crit. Rev. Food Sci. Nutr. 44 (2004) 223-237.
Google Scholar
[26]
J. W. Rhim, Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials, Food Sci. Biotech. 13 (2004)528-535.
Google Scholar
[27]
H. J. Park, Development of advanced edible coatings for fruits, Trends Food Sci. Technol. 10 (1999) 254-260.
Google Scholar
[28]
D. J. McClements, E. A. Decker, J., Weiss, inventors; University of Massachussetts, assignee. 2005. UMA 05-27: Novel procedure for creating nanolaminated edible films and coatings, U.S. patent application.
Google Scholar
[29]
J. F. Graveland-Bikker, C. G. de Kruif, Self-assembly of hydrolysed α-lactalbumin into nanotubes, FEBS J. 272(Suppl 1)(2005) 550.
Google Scholar
[30]
J. F. Graveland-Bikker, C. G. de Kruif, Unique milk protein-based nanotubes: Food and nanotechnology meet, Trends Food Sci. Technol. 17 (2006) 196-203.
DOI: 10.1016/j.tifs.2005.12.009
Google Scholar
[31]
J. F. Graveland-Bikker., G. Fritz, O. Glatter, Growth and structure of α-lactalbumin nanotubes, J. Appl. Crystallogr. 39 (2006) 180-184.
DOI: 10.1107/s0021889805043244
Google Scholar
[32]
J. F. Graveland-Bikker, I. A. T. Schaap, C. F. Schmidt, C. G. de Kruif, Structural and mechanical study of a self assembling protein nanotube, Nano Lett. 6 (2006) 616-621.
DOI: 10.1021/nl052205h
Google Scholar
[33]
J. Han, J. Fu, R. B. Schoch, Molecular sieving using nanofilters: Past, present and future, Lab Chip. 8 (2008) 23-33.
DOI: 10.1039/b714128a
Google Scholar
[34]
L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camiileri, C. J. Humphreys, Electrophoretic manipulation of single DNA molecule in nanofabricated capillaries, Lab Chip. 4 (2004) 225229.
DOI: 10.1039/b312592k
Google Scholar
[35]
N. C. Seeman, DNA in a material world, Nature. 421 (2004) 427-431.
Google Scholar
[36]
Ranjana Wangvipula, -Thailand embarks on the nano path to better rice and silk, ‖ Bangkok Post, Jan. 21, 2004. Available on internet: http: /www. smalltimes. com/document_display. cfm?document_id=7266.
Google Scholar
[37]
P. Roblin, D. A. Barrow, Microsystems technology for remote monitoring and control in sustainable agricultural practices, J. Environ. Monit. 2 (2000) 385-392.
DOI: 10.1039/b003381m
Google Scholar
[38]
M. Askari, J. P. Alarie, M. Moreno-Bondi, T. Vo-Dinh, Application of an Antibody Biochip for p.53 Detection and Cancer Diagnosis, Biotechnology Progress. 17 (2001) 543-552.
DOI: 10.1021/bp010008s
Google Scholar
[39]
D. L. Stokes, G. D. Griffin, T. Vo-Dinh, Detection of E. Coli using a microfluidicsbased antibody biochip detection system, Fresenius Journal of Analytical Chemistry, 369 (2001) 295301.
DOI: 10.1007/s002160000660
Google Scholar
[40]
T. Vo-Dinh, Development of a DNA Biochip: Principle and Application, Sensors and Actuators, B51 (1999) 52-59.
Google Scholar
[41]
M. D. Eggers, High-throughput microarray technology. Innovations in Pharmaceutical Technology, 6 (2000) 36-44.
Google Scholar
[42]
T. Vo-Dinh, J. P. Alarie, N. R. Isola, D. Landis, A. L. Wintenberg, M. N. Ericson, DNA Biochip Using Phototransitor Integrated Circuit, Analytical Chemistry, 71 (1999) 358-363.
DOI: 10.1021/ac980043m
Google Scholar
[43]
T. Vo-Dinh, B. M. Cullum, Biosensors and Biochips, Advances in Biological and Medical Diagnostics, Fresenius Journal of Analytical Chemistry, 366 (2000) 540-551.
DOI: 10.1007/s002160051549
Google Scholar
[44]
T. Vo-Dinh, M. Askari, Microarrays and Biochips: Applications and Potential in Genomics and Proteomics, Journal of Current Geonomics, 2 (2001) 399-415.
DOI: 10.2174/1389202013350724
Google Scholar
[45]
T. Vo-Dinh, B. M. Cullum, D. L. Stokes, Nanosensors and biochips: frontiers in biomolecular diagnostics, Sensors and Actuators, B74 (2001) 2-11.
DOI: 10.1016/s0925-4005(00)00705-x
Google Scholar
[46]
R. P. Kulkarni, Nano-Bio-Genesis: tracing the rise of nanotechnology and nanobiotechnology as big science,. Journal of Biomedical Discovery and Collaboration. 2 (2007) 3.
DOI: 10.1186/1747-5333-2-3
Google Scholar
[47]
C. A. Lévesque, Molecular methods for detection of plant pathogens-What is the future? Can. J. Plant Pathol. 24 (2001) 333-336.
Google Scholar
[48]
J. Schulte, 2005 Nanotechnology: Global Strategies, Industry Trends and Applications. Wiley, John & Sons, Incorporated. Hoboken, NJ.
Google Scholar
[49]
E. Ricca, S. M. Cutting, Emerging applications of bacterial spores in nanobiotechnology. J. Nanobiotech. (2003) 1-10.
Google Scholar
[50]
G. B Sukhorukov, H. Mohwald, Multifunctional cargo systems for biotechnology. Trends in Biotechnology 25(3) (2007) 93-98.
DOI: 10.1016/j.tibtech.2006.12.007
Google Scholar
[51]
N. P. Praetorius, T. K. Mandal, Engineered Nanoparticles in Cancer Therapy. Recent Patents on Drug Delivery & Formulation, 1 (2007) 37-51.
DOI: 10.2174/187221107779814104
Google Scholar
[52]
C. Alexiou, R. Jurgons, C. Seliger, O. Brunke, H. Iro, S. Odenbach, Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res. 27(4A) (2007)2019-(2022).
Google Scholar
[53]
C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner, C. Bergemann, E. Huenges, T. Nawroth, W. Arnold, F.G. Parak, Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 35(5) (2006) 446-50.
DOI: 10.1007/s00249-006-0042-1
Google Scholar
[54]
C. Alexiou, R. Jurgons, R. J. Schmid, C. Bergemann, J. Henke, W. Erhardt, E. Huenges, F. Parak, Magnetic drug targeting-biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target. 11(3) (02003) 139-49.
DOI: 10.1080/1061186031000150791
Google Scholar
[55]
G. Y. J. Chen, S. Q. Yao, Lighting up cancer cells with -dots‖, The Lancet 364 (2004) 20012003.
Google Scholar
[56]
S. D. Patil, D. G. Rhodes, D. J. Burgess, DNA-based Therapeutics and DNA Delivery Systems: A Comprehensive Review. The AAPS Journal 7 (1) (2005) E61-E77.
DOI: 10.1208/aapsj070109
Google Scholar
[57]
K. K. Jain, Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat. 4 (4) (2005)407-416.
DOI: 10.1177/153303460500400408
Google Scholar
[58]
P. L. Brannon, J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56 (11) (2004)1649-1659.
DOI: 10.1016/j.addr.2004.02.014
Google Scholar
[59]
N. R. Scott, Nanotechnology and animal health. Rev. sci. tech. Off. int. Epiz. 24 (1) (2005) 425-432.
Google Scholar
[60]
M. C. Roco, Nanotechnology: convergence with modern biology and medicine. Current Opinion in Biotechnology 14 (2003) 337-346.
DOI: 10.1016/s0958-1669(03)00068-5
Google Scholar
[61]
W. J. Kress, K. J. Wurdack, E. A. Zimmer, L. A. Weigt, D. H. Janzen, Use of DNA barcodes to identify flowering plants. PNAS 102 (23) (2005) 8369-8374.
DOI: 10.1073/pnas.0503123102
Google Scholar
[62]
L. Clime, S. Y. Zhao, P. Chen, F. Normandin, H. Roberge, T. Veres, The interaction field in arrays of ferromagnetic barcode nanowires. Nanotechnology 18 (2007) 435709-435715.
DOI: 10.1088/0957-4484/18/43/435709
Google Scholar
[63]
J. M. Nam, C. S. Thaxton, C. A. Mirkin, Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science 301(5641) (2003)1884 - 1886.
DOI: 10.1126/science.1088755
Google Scholar
[64]
B. C. Meyers, D. W. Galbraith, T. Nelson, V. Agrawal, Methods for Transcriptional Profiling in Plants. Be Fruitful and Replicate. Plant Physiology 135 (2004) 637-652.
DOI: 10.1104/pp.104.040840
Google Scholar
[65]
J. Weiss, P. Takhistov, J. D. McClements, Functional materials in food nanotechnology. Journal of Food Science 71(2006) R107-R116.
DOI: 10.1111/j.1750-3841.2006.00195.x
Google Scholar
[66]
M. Siegrist, N. Stampfli, H. Kastenholz, C. Keller, Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51 (2008) 283- 290.
DOI: 10.1016/j.appet.2008.02.020
Google Scholar
[67]
A. Helland, H. Kastenholz, A. Thidell, P. Arnfalk, K. Deppert, Nanoparticulate materials and regulatory policy in Europe: An analysis of stakeholder perspectives. Journal of Nanoparticle Research, 8 (2006) 709-719.
DOI: 10.1007/s11051-006-9096-3
Google Scholar
[68]
A. ElAmin, Nanocantilevers studied for quick pathogen detection. (2006), Available from http: /www. foodproductiondaily-usa. com/news/ng. asp?id¼70159.
Google Scholar
[69]
Y. Li, Y. D. Tseng, S. Y. Kwon, L. Despaux, J. S. Bunch, P. L. Mceuen, D. Luo, Controlled assembly of dendrimer-like DNA. Nature Materials, 3 (2004) 38-42.
DOI: 10.1038/nmat1045
Google Scholar
[70]
S. Roach, Instant, portable, simultaneous pathogen inspection. (2006), Available from http: /www. foodproductiondaily-usa. com/news/ng. asp?id¼69938.
Google Scholar
[71]
C. F. Chau, S. H. Wu, G. C. Yen, The development of regulations for food nanotechnology. Trends in Food Science & Technology 18 (2007) 269-280.
DOI: 10.1016/j.tifs.2007.01.007
Google Scholar
[72]
F. S. Buentello, D. L. Persad, E. B. Court, D. K. Martin, A. S. Daar, P. A. Singer, Nanotechnology and the Developing World. PLoS Medicine (2)5 (2005) 383-386.
DOI: 10.1371/journal.pmed.0020097
Google Scholar
[73]
V. J. Morris, Is nanotechnology going to change the future of food technology? Int. Rev. Food Sci. Technol. 3 (2005) 16-18.
Google Scholar
[74]
S. Mannino, M. Scampicchio, Nanotechnology and Food Quality Control. Veterinary Research Communications, 31(Suppl. 1) (2007) 149-151.
DOI: 10.1007/s11259-007-0081-9
Google Scholar
[75]
T. Masciangioli, W. X. Zhang, Environmental technologies at the nanoscale. Environ. Sci. Technol. 37(5) (2003) 102A-108A.
DOI: 10.1021/es0323998
Google Scholar
[76]
W. X. Zhang, B., Karn Nanoscale environmental science and technology: challenges and opportunities. Environ. Sci. Technol. 39(5) (2005) 94A-95A.
DOI: 10.1021/es053197+
Google Scholar
[77]
Nanotechnology helps solve the world's energy problems. Nanoforum; 4-(2004).
Google Scholar
[78]
A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer, V. I. Klimov, Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers. Nano. Lett. 5 (6) (2005).
DOI: 10.1021/nl050384x
Google Scholar
[79]
M. Stockman, From nano-optics to street lights. Nat. Mater. 3(7) (2004) 423-424.
Google Scholar
[80]
P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, A stable quasi-solidstate dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2(6) (2003) 402-407.
DOI: 10.1038/nmat904
Google Scholar
[81]
R. D. Schaller, V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92(18) (2004)186601.
DOI: 10.1103/physrevlett.92.186601
Google Scholar
[82]
A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van-Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4 (5) (2005)366-377.
DOI: 10.1038/nmat1368
Google Scholar