Structural, Optical, Photocatalytic and Electrochemical Studies of PbS Nanoparticles

Article Preview

Abstract:

Oleic acid (OA) and octadecylamine (ODA) capped lead sulphide (PbS) nanoparticles were prepared at 150, 190 and 230 °C. X-ray diffraction patterns indicates that the synthesized PbS nanoparticles were in the rock cubic salt crystalline phase. The particle sizes of the as-prepared PbS nanoparticles are in the range 2.91–10.05 nm for OA-PbS(150), 24.92–39.98 nm for ODA-PbS(150), 9.26 – 29.08 nm for OA-PbS(190), 34.54 – 48.04 nm for ODA-PbS(190), 17.96–88.07 nm for OA-PbS(230) and 53.60 – 94.42 nm for ODA-PbS(230). SEM images revealed flaky and agglomerated spherical like morphology for the nanoparticles. The energy bandgap of the PbS nanoparticles are in the range 4.14 – 4.25 eV, OA-PbS(230) have the lowest bandgap of 4.14 eV while ODA-PbS(150) have the highest bandgap of 4.25 eV. The PbS nanoparticles were used as photocatalyst for the degradation of Rhodamine B and OA-PbS(150) showed efficiency of 44.11% after 360 mins. Cyclic voltammetry of the PbS nanoparticles showed a reversible redox reaction and linear Randles-Sevcik plots indicates electron transfer process is diffusion controlled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-31

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Rajathi, K. Kirubavathi, K. Selvaraju, Structural, morphological, optical, and photoluminescence properties of nanocrystalline PbS thin films grown by chemical bath deposition, Arab. J. Chem. 10(8) (2017) 1167-1174.

DOI: 10.1016/j.arabjc.2014.11.057

Google Scholar

[2] A. YousefiAmin, N. A. Killilea, M. Sytnyk, P. Maisch, K. C. Tam, H.-J. Egelhaaf, S. Langner, T. Stubhan, C. J. Brabec, T. Rejek, Fully Printed Infrared Photodetectors from PbS Nanocrystals with Perovskite Ligands, ACS Nano (2019).

DOI: 10.1021/acsnano.8b09223

Google Scholar

[3] N. Sonawane, P. Baviskar, R. Ahire, B. Sankapal, CdO necklace like nanobeads decorated with PbS nanoparticles: room temperature LPG sensor, Mater. Chem. Phys. 191 (2017) 168-172.

DOI: 10.1016/j.matchemphys.2017.01.011

Google Scholar

[4] M. M. Tavakoli, A. Tayyebi, A. Simchi, H. Aashuri, M. Outokesh, Z. Fan, Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol, J. Nanopart. Res. 17(1) (2015) 9.

DOI: 10.1007/s11051-014-2854-8

Google Scholar

[5] L. Yue, J. Wang, Y. Zhang, S. Qi, B. Xin, Controllable biosynthesis of high-purity lead-sulfide (PbS) nanocrystals by regulating the concentration of polyethylene glycol in microbial system, Bioproc. Biosyst. Eng. 39(12) (2016) 1839-1846.

DOI: 10.1007/s00449-016-1658-x

Google Scholar

[6] Y. Bi, A. Bertran, S. Gupta, I. Ramiro, S. Pradhan, S. Christodoulou, S.-N. Majji, M. Z. Akgul, G. Konstantatos, Solution processed infrared-and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots, Nanoscale 11(3) (2019) 838-843.

DOI: 10.1039/c8nr08755e

Google Scholar

[7] D. F. Garcia-Gutierrez, L. P. Hernandez-Casillas, M. V. Cappellari, F. Fungo, E. Martínez-Guerra, D. I. García-Gutiérrez, Influence of the Capping Ligand on the Band Gap and Electronic Levels of PbS Nanoparticles through Surface Atomistic Arrangement Determination, ACS Omega 3(1) (2017) 393-405.

DOI: 10.1021/acsomega.7b01451

Google Scholar

[8] Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis, Chem. Mater. 26(1) (2013) 72-83.

DOI: 10.1021/cm4022479

Google Scholar

[9] C.-C. Li, S.-J. Chang, F.-J. Su, S.-W. Lin, Y.-C. Chou, Effects of capping agents on the dispersion of silver nanoparticles, Colloids Surf. A 419 (2013) 209-215.

DOI: 10.1016/j.colsurfa.2012.11.077

Google Scholar

[10] A. Y. Olenin, Y. A. Krutyakov, A. Kudrinskii, G. Lisichkin, Formation of surface layers on silver nanoparticles in aqueous and water-organic media, Colloid J. 70(1) (2008) 71-76.

DOI: 10.1134/s1061933x08010110

Google Scholar

[11] S. A. Jadhav, V. Brunella, D. Scalarone, Polymerizable ligands as stabilizers for nanoparticles, Part. Part. Sys. Charac. 32(4) (2015) 417-428.

DOI: 10.1002/ppsc.201400074

Google Scholar

[12] A. A. Nwabueze, K. Onyekachi, Influence of polyvinyl alcohol and alpha-methacrylic acid as capping agents on particle size of ZnS nanoparticles, Appl. Phys. Res. 4(4) (2012) 26.

DOI: 10.5539/apr.v4n4p26

Google Scholar

[13] N. Sahu, N. Brahme, R. Sharma, Effect of capping agent on the particle size of CdSe nanoparticles, Luminescence 31(7) (2016) 1400-1406.

DOI: 10.1002/bio.3123

Google Scholar

[14] A. M. Paca, P. A. Ajibade, Synthesis, Optical, and Structural Studies of Iron Sulphide Nanoparticles and Iron Sulphide Hydroxyethyl Cellulose Nanocomposites from Bis-(Dithiocarbamato) Iron(II) Single-Source Precursors, Nanomaterials 8(4) (2018) 187.

DOI: 10.3390/nano8040187

Google Scholar

[15] R. Abargues, J. Navarro, P. J. Rodríguez-Cantó, A. Maulu, J. F. Sánchez-Royo, J. P. Martínez-Pastor, Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach, Nanoscale 11(4) (2019) 1978-1987.

DOI: 10.1039/c8nr07760f

Google Scholar

[16] A. Borhade, B. Uphade, A comparative study on characterization and photocatalytic activities of PbS and Co doped PbS nanoparticles, Chal. Lett. 9(7) (2012) 299-306.

Google Scholar

[17] R. M. Mohamed, E. S. Aazam, New Visible‐Light Pt/PbS Nanoparticle Photocatalysts for the Photocatalytic Oxidation of Thiophene, CLEAN–Soil, Air, Water, 43(3) (2015) 421-426.

DOI: 10.1002/clen.201400115

Google Scholar

[18] C. Ezema, S. Offiah, A. Nwanya, P. Ukoha, B. Ezema, M. Maaza, F. Ezema, Electrochemical Studies of PVVP-Capped Pbs Thin Film Deposited By Polymer-Assisted Chemical Bath Deposition (PACBD), Chal. Lett. 12(1) (2015).

DOI: 10.1007/s00339-016-9965-2

Google Scholar

[19] A. E. Oluwalana, P. A. Ajibade, Synthesis and crystal structures of Pb(II) dithiocarbamates complexes: Precursors for PbS nanophotocatalyst, J. Sulfur Chem.

DOI: 10.1080/17415993.2019.1703986

Google Scholar

[20] K. I. Y. Ketchemen, S. Mlowe, L. D. Nyamen, A. A. Aboud, M. P. Akerman, P. T. Ndifon, P. O'Brien, N. Revaprasadu, Heterocyclic lead(II) thioureato complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films, Inorg. Chim. Acta 479((2018) 42-48.

DOI: 10.1016/j.ica.2018.04.023

Google Scholar

[21] B. Abdallah, R. Hussein, N. Al-Kafri, W. Zetoun, PbS Thin Films Prepared by Chemical Bath Deposition: Effects of Concentration on the Morphology, Structure and Optical Properties, Iran. J. Sci. Technol. A 43(3) (2019) 1371-1380.

DOI: 10.1007/s40995-019-00698-1

Google Scholar

[22] S. C. Masikane, S. Mlowe, C. Gervas, N. Revaprasadu, A. S. Pawar, S. S. Garje, Lead(II) halide cinnamaldehyde thiosemicarbazone complexes as single source precursors for oleylamine-capped lead sulfide nanoparticles, J. Mater. Sci: Mater. Electron. 29(2) (2018) 1479-1488.

DOI: 10.1007/s10854-017-8056-2

Google Scholar

[23] C. Gervas, S. Mlowe, M. P. Akerman, N. Revaprasadu, Phase pure Ni 3 S 2 and NiS from bis (N'-ethyl-N-piperazinylcarbodithioato-S, S')–nickel(II) via solvent thermolysis and aerosol assisted chemical vapour deposition, New J. Chem. 42(8) (2018) 6203-6209.

DOI: 10.1039/c8nj00092a

Google Scholar

[24] X. Duan, J. Ma, Y. Shen, W. Zheng, A novel PbS hierarchical superstructure guided by the balance between thermodynamic and kinetic control via a single-source precursor route, Inorg. Chem. 51(2) (2012) 914-919.

DOI: 10.1021/ic201889n

Google Scholar

[25] J. Liu, H. Yu, Z. Wu, W. Wang, J. Peng, Y. Cao, Size-tunable near-infrared PbS nanoparticles synthesized from lead carboxylate and sulfur with oleylamine as stabilizer, Nanotechnology 19(34) (2008) 345602.

DOI: 10.1088/0957-4484/19/34/345602

Google Scholar

[26] L. D. Nyamen, V. R. Pullabhotla, A. A. Nejo, P. T. Ndifon, J. H. Warner, N. Revaprasadu, Synthesis of anisotropic PbS nanoparticles using heterocyclic dithiocarbamate complexes, Dalton Trans. 41(27) (2012) 8297-8302.

DOI: 10.1039/c2dt30282a

Google Scholar

[27] B. D. Viezbicke, S. Patel, B. E. Davis, D. P. Birnie III, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi B 252(8) (2015) 1700-1710.

DOI: 10.1002/pssb.201552007

Google Scholar

[28] T. Chintso, P. A. Ajibade, Synthesis and structural studies of hexadecylamine capped lead sulfide nanoparticles from dithiocarbamate complexes single source precursors, Mater. Lett. 141 (2015) 1-6.

DOI: 10.1016/j.matlet.2014.11.022

Google Scholar

[29] Z. Q. Mamiyev, N. O. Balayeva, Preparation and optical studies of PbS nanoparticles, Opt. Mater. 46 (2015) 522-525.

DOI: 10.1016/j.optmat.2015.05.017

Google Scholar

[30] S. Chen, W. Liu, Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties, Mater. Chem. Phys. 98(1) (2006) 183-189.

DOI: 10.1016/j.matchemphys.2005.09.043

Google Scholar

[31] J. Liu, H. Tao, Y. Cao, J. Ackermann, Multi-Branched CdSe Nanocrystals Stabilized by Weak Ligand for Hybrid Solar Cell Application, J. Nanosci. Nanotechnol. 14(4) (2014) 2836-2841.

DOI: 10.1166/jnn.2014.8612

Google Scholar

[32] J. D. Patel, F. Mighri, A. Ajji, S. Elkoun, Room temperature synthesis of aminocaproic acid-capped lead sulphide nanoparticles, Mater. Sci. Appl. 3(02) (2012) 125.

DOI: 10.4236/msa.2012.32020

Google Scholar

[33] Z. Ye, L. Kong, F. Chen, Z. Chen, Y. Lin, C. Liu, A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes, Optik 164 (2018) 345-354.

DOI: 10.1016/j.ijleo.2018.03.030

Google Scholar

[34] M. Suganya, A. Balu, S. Balamurugan, J. Srivind, V. Narasimman, N. Manjula, C. Rajashree, V. Nagarethinam, Photoconductive, photocatalytic and antifungal properties of PbS: Mo nanoparticles synthesized via precipitation method, Surf. Interfaces 13 (2018) 148-156.

DOI: 10.1016/j.surfin.2018.09.005

Google Scholar

[35] C. Xu, P. R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis, Chem. Soc. Rev. (2019).

DOI: 10.1039/c9cs00102f

Google Scholar

[36] A. Cuharuc, L. Kulyuk, R. Lascova, A. Mitioglu, A. Dikusar, Electrochemical characterization of PbS quantum dots capped with oleic acid and PbS thin films—a comparative study, Surf. Eng. Appl. Elect. 48(3) (2012) 193-211.

DOI: 10.3103/s1068375512030040

Google Scholar

[37] V. Gau, S.-C. Ma, H. Wang, J. Tsukuda, J. Kibler, D. A. Haake, Electrochemical molecular analysis without nucleic acid amplification, Methods 37(1) (2005) 73-83.

DOI: 10.1016/j.ymeth.2005.05.008

Google Scholar