[1]
S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
P. Sagar Babu, B.K. Madhavi, K. Lal Kishore, A Survey on Alternative to MOS Device Structures beyond 32nm Technology,, International Journal of VLSI and Embedded Systems-IJVES 05 (2014).
Google Scholar
[3]
S. Datta, H. Liu, V. Narayanan, Tunnel FET technology: A reliability perspective,, Microelectronics Reliability, 54 (2014) 861-874.
DOI: 10.1016/j.microrel.2014.02.002
Google Scholar
[4]
T.E. Ayoob Khan, S. Reji T.A. Shahul Hameed, Leakage Suppression Approaches in Bulk FinFETs,, Materialstoday: proceedings, 11 (2019) 1054-1060.
DOI: 10.1016/j.matpr.2018.12.038
Google Scholar
[5]
Z. Ramezani, A.A. Orouji, Investigation of vertical graded channel doping in nanoscale fully-depleted SOI-MOSFET,, Superlattices and Microstructures, 98 (2016) 359-370.
DOI: 10.1016/j.spmi.2016.08.043
Google Scholar
[6]
K.Bikshalu, V.S.K. Reddy, P.C.S. Reddy, K.V. Raod, High-performance Carbon Nanotube Field Effect Transistors with High k Dielectric Gate Material,, Materials Today: Proceedings, 2 (2015) 4457-4462.
DOI: 10.1016/j.matpr.2015.10.048
Google Scholar
[7]
C.T. Xuan, N.T. Thuy etal, Carbon Nanotube Field-Effect Transistor for DNA Sensing, J. Electron. Mater. 46 (2017) 3507.
Google Scholar
[8]
Yang Sun, etal., Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization, Biosens. Bioelectron. (2019) in press.
Google Scholar
[9]
Y. W. Chang, J. S. Oh, S. H. Yoo, H. H. Choi and K. H. Yoo, Electrically refreshable carbon-nanotube-based gas sensors, Nanotechnology 18 (2007) 435504.
DOI: 10.1088/0957-4484/18/43/435504
Google Scholar
[10]
K. Chikkadi, M. Muoth, C. Roman, M. Haluska and C. Hierold, Advances in NO2 sensing with individual single-walled carbon nanotube transistors, Beilstein J. Nanotechnol. 5 (2014) 2179–2191.
DOI: 10.3762/bjnano.5.227
Google Scholar
[11]
T. L.Trana, T. T. Nguyen etal., Detection of influenza virus using carbon nanotubes field effect transistor based DNA sensor. Physica E 93 (2017) 83-86.
DOI: 10.1016/j.physe.2017.05.019
Google Scholar
[12]
N. Peng, Q. Zhang, Y. C. Lee, O. K. Tan, N. Marzari, Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors, Sens. Actuators, B 132 (2008) 191–195.
DOI: 10.1016/j.snb.2008.01.025
Google Scholar
[13]
D. L. McGuire and D. L. Pulfrey, A multi-scale model for mobile and localized electroluminescence in carbon nanotube field-effect transistors, Nanotechnology 17 (2006) 5805–5811.
DOI: 10.1088/0957-4484/17/23/016
Google Scholar
[14]
Chi-Ti Hsieh, D. S. Citrin, P. P. Ruden, Recombination-mechanism dependence of transport and light emission of ambipolar long-channel carbon-nanotube field-effect transistors, Appl. Phys. Lett 90 (2007) 012118.
DOI: 10.1063/1.2429029
Google Scholar
[15]
J. Tersoff , Marcus Freitag, James C. Tsang, and Phaedon Avouris, Device modeling of long-channel nanotube electro-optical emitter, Appl. Phys. Lett 86 (2005) 263108.
DOI: 10.1063/1.1957116
Google Scholar
[16]
A. Naeemi, and D. Meindl, Physical modeling of temperature coefficient of resistance for single- and multiwall- carbon nanotube interconnects, IEEE Elec. Dev. Lett. 28 (2007) 135–138.
DOI: 10.1109/led.2006.889240
Google Scholar
[17]
Haji-Nasiri S., Moravvej-Farshi M.K., and Faez, R., Stability analysis in multiwall carbon nanotube bundle interconnects, Microelectron. Reliab. 52 (2013) 3026–3034.
DOI: 10.1016/j.microrel.2012.06.147
Google Scholar
[18]
Wei-Chih Chiu, Bing-Yue Tsui, High performance of CNT-interconnects by the multi-layer structure, Microelectron. Reliab. 54 (2014) 778-784.
DOI: 10.1016/j.microrel.2013.12.024
Google Scholar
[19]
W.C. Chen, Yin, W.Y., Jia, L., and Liu, Q.H., Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays, IEEE Trans. Nanotech. 8 (2009) 718–728.
DOI: 10.1109/tnano.2009.2019725
Google Scholar
[20]
V. Perebeinos, J. Tersoff, and P. Avouris, Electron-phonon Interaction and Transport in Semiconducting Carbon Nanotubes, Phys. Rev. Lett. 94 (2005) 086802.
DOI: 10.1103/physrevlett.94.086802
Google Scholar
[21]
S. Dehghani, M. K. Moravvej-Farshi, and M. H. Sheikhi, Temperature dependence of electrical resistance of individual carbon nanotubes and carbon nanotubes network, Mod. Phys. Lett. B 26 (2012) 1250136.
DOI: 10.1142/s0217984912501369
Google Scholar
[22]
S. Dehghani, M. K. Moravvej-Farshi, and M. H. Sheikhi, Compact Formulas for the Electrical Resistance of semiconducting and Metallic Single Wall Carbon Nanotubes, Fullerenes, Nanotubes, Carbon Nanostruct, 23 (2015) 899-905.
DOI: 10.1080/1536383x.2015.1038782
Google Scholar
[23]
R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73 (1998) 2447.
DOI: 10.1063/1.122477
Google Scholar
[24]
Y. Zhao, A. Liao, and E. Pop, Multiband mobility in semiconducting carbon nanotubes, IEEE Elec. Dev. Lett. 30 (2009) 1078–1080.
DOI: 10.1109/led.2009.2027615
Google Scholar