Numerical Study of Long Channel Carbon Nanotube Based Transistors by Considering Variation in CNT Diameter

Article Preview

Abstract:

While much numerical studies have been done on short channel carbon nanotube field effect transistors (CNT-FETs), there are only a few numerical reports on long channel devices. Long channel CNT-FETs have been widely used in chemical sensors and biosensors as well as light emitters. Therefore, numerical study is helpful for a better understanding of the behavior of such devices. In this paper, we numerically analyze long-channel CNT-FETs by solving the continuity and charge equations self-consistently. To increase the accuracy of simulation, filed-dependent mobility is applied to the equations. Furthermore, a method is proposed to obtain the electrical current of transistors as a function of CNT diameter. Obtained results are in good agreement with the previous experimental data. It is found that compared to a CNT-based resistor, the dependence of current on diameter is much higher in a CNT-FET. Finally, reproducibility of transistors based on the arrays of random CNTs of 1-2 nm diameter in terms of the CNTs number is also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-87

Citation:

Online since:

February 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon. Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] P. Sagar Babu, B.K. Madhavi, K. Lal Kishore, A Survey on Alternative to MOS Device Structures beyond 32nm Technology,, International Journal of VLSI and Embedded Systems-IJVES 05 (2014).

Google Scholar

[3] S. Datta, H. Liu, V. Narayanan, Tunnel FET technology: A reliability perspective,, Microelectronics Reliability, 54 (2014) 861-874.

DOI: 10.1016/j.microrel.2014.02.002

Google Scholar

[4] T.E. Ayoob Khan, S. Reji T.A. Shahul Hameed, Leakage Suppression Approaches in Bulk FinFETs,, Materialstoday: proceedings, 11 (2019) 1054-1060.

DOI: 10.1016/j.matpr.2018.12.038

Google Scholar

[5] Z. Ramezani, A.A. Orouji, Investigation of vertical graded channel doping in nanoscale fully-depleted SOI-MOSFET,, Superlattices and Microstructures, 98 (2016) 359-370.

DOI: 10.1016/j.spmi.2016.08.043

Google Scholar

[6] K.Bikshalu, V.S.K. Reddy, P.C.S. Reddy, K.V. Raod, High-performance Carbon Nanotube Field Effect Transistors with High k Dielectric Gate Material,, Materials Today: Proceedings, 2 (2015) 4457-4462.

DOI: 10.1016/j.matpr.2015.10.048

Google Scholar

[7] C.T. Xuan, N.T. Thuy etal, Carbon Nanotube Field-Effect Transistor for DNA Sensing, J. Electron. Mater. 46 (2017) 3507.

Google Scholar

[8] Yang Sun, etal., Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization, Biosens. Bioelectron. (2019) in press.

Google Scholar

[9] Y. W. Chang, J. S. Oh, S. H. Yoo, H. H. Choi and K. H. Yoo, Electrically refreshable carbon-nanotube-based gas sensors, Nanotechnology 18 (2007) 435504.

DOI: 10.1088/0957-4484/18/43/435504

Google Scholar

[10] K. Chikkadi, M. Muoth, C. Roman, M. Haluska and C. Hierold, Advances in NO2 sensing with individual single-walled carbon nanotube transistors, Beilstein J. Nanotechnol. 5 (2014) 2179–2191.

DOI: 10.3762/bjnano.5.227

Google Scholar

[11] T. L.Trana, T. T. Nguyen etal., Detection of influenza virus using carbon nanotubes field effect transistor based DNA sensor. Physica E 93 (2017) 83-86.

DOI: 10.1016/j.physe.2017.05.019

Google Scholar

[12] N. Peng, Q. Zhang, Y. C. Lee, O. K. Tan, N. Marzari, Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors, Sens. Actuators, B 132 (2008) 191–195.

DOI: 10.1016/j.snb.2008.01.025

Google Scholar

[13] D. L. McGuire and D. L. Pulfrey, A multi-scale model for mobile and localized electroluminescence in carbon nanotube field-effect transistors, Nanotechnology 17 (2006) 5805–5811.

DOI: 10.1088/0957-4484/17/23/016

Google Scholar

[14] Chi-Ti Hsieh, D. S. Citrin, P. P. Ruden, Recombination-mechanism dependence of transport and light emission of ambipolar long-channel carbon-nanotube field-effect transistors, Appl. Phys. Lett 90 (2007) 012118.

DOI: 10.1063/1.2429029

Google Scholar

[15] J. Tersoff , Marcus Freitag, James C. Tsang, and Phaedon Avouris, Device modeling of long-channel nanotube electro-optical emitter, Appl. Phys. Lett 86 (2005) 263108.

DOI: 10.1063/1.1957116

Google Scholar

[16] A. Naeemi, and D. Meindl, Physical modeling of temperature coefficient of resistance for single- and multiwall- carbon nanotube interconnects, IEEE Elec. Dev. Lett. 28 (2007) 135–138.

DOI: 10.1109/led.2006.889240

Google Scholar

[17] Haji-Nasiri S., Moravvej-Farshi M.K., and Faez, R., Stability analysis in multiwall carbon nanotube bundle interconnects, Microelectron. Reliab. 52 (2013) 3026–3034.

DOI: 10.1016/j.microrel.2012.06.147

Google Scholar

[18] Wei-Chih Chiu, Bing-Yue Tsui, High performance of CNT-interconnects by the multi-layer structure, Microelectron. Reliab. 54 (2014) 778-784.

DOI: 10.1016/j.microrel.2013.12.024

Google Scholar

[19] W.C. Chen, Yin, W.Y., Jia, L., and Liu, Q.H., Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays, IEEE Trans. Nanotech. 8 (2009) 718–728.

DOI: 10.1109/tnano.2009.2019725

Google Scholar

[20] V. Perebeinos, J. Tersoff, and P. Avouris, Electron-phonon Interaction and Transport in Semiconducting Carbon Nanotubes, Phys. Rev. Lett. 94 (2005) 086802.

DOI: 10.1103/physrevlett.94.086802

Google Scholar

[21] S. Dehghani, M. K. Moravvej-Farshi, and M. H. Sheikhi, Temperature dependence of electrical resistance of individual carbon nanotubes and carbon nanotubes network, Mod. Phys. Lett. B 26 (2012) 1250136.

DOI: 10.1142/s0217984912501369

Google Scholar

[22] S. Dehghani, M. K. Moravvej-Farshi, and M. H. Sheikhi, Compact Formulas for the Electrical Resistance of semiconducting and Metallic Single Wall Carbon Nanotubes, Fullerenes, Nanotubes, Carbon Nanostruct, 23 (2015) 899-905.

DOI: 10.1080/1536383x.2015.1038782

Google Scholar

[23] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73 (1998) 2447.

DOI: 10.1063/1.122477

Google Scholar

[24] Y. Zhao, A. Liao, and E. Pop, Multiband mobility in semiconducting carbon nanotubes, IEEE Elec. Dev. Lett. 30 (2009) 1078–1080.

DOI: 10.1109/led.2009.2027615

Google Scholar