Effect of Microstructure and Surface Energy on the Static and Dynamic Characteristics of FG Timoshenko Nanobeam Embedded in an Elastic Medium

Article Preview

Abstract:

This paper presents an investigation of the size-dependent static and dynamic characteristics of functionally graded (FG) Timoshenko nanobeams embedded in a double-parameter elastic medium. Unlike existing Timoshenko nanobeam models, the combined effects of surface elasticity, residual surface stress, surface mass density and Poisson’s ratio, in addition to axial deformation, are incorporated in the newly developed model. Also, the continuous gradation through the thickness of all the properties of both bulk and surface materials is considered via power law. The Navier-type solution is developed for simply supported FG nanobeam in the form of infinite power series for bending, buckling and free vibration. The obtained results agree well with those available in the literature. In addition, selected numerical results are presented to explore the effects of the material length scale parameter, surface parameters, gradient index, elastic medium, and thickness on the static and dynamic responses of FG Timoshenko nanobeams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-117

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Udupa G., Rao S.S., & Gangadharan K. (2014). Functionally graded composite materials: an overview. Procedia Materials Science, 5, 1291-1299.

DOI: 10.1016/j.mspro.2014.07.442

Google Scholar

[2] Kanani A., Niknam H., Ohadi A., & Aghdam M. (2014). Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115, 60-68.

DOI: 10.1016/j.compstruct.2014.04.003

Google Scholar

[3] Lee Z., Ophus C., Fischer L., Nelson-Fitzpatrick N., Westra K., Evoy S., Mitlin D. (2006). Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology, 17(12), 3063.

DOI: 10.1088/0957-4484/17/12/042

Google Scholar

[4] Witvrouw A., & Mehta A. (2005). The use of functionally graded poly-SiGe layers for MEMS applications. Paper presented at the Materials science forum.

Google Scholar

[5] Boutaleb S., Benrahou K.H., Bakora A., Algarni A., Bousahla A.A., Tounsi A., Tounsi A., and Mahmoud S. (2019). Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Advances in Nano Research,. 7(3), 189-206.

Google Scholar

[6] Karami B., Janghorban M., Shahsavari D., and Tounsi A. (2018). A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates. Steel and Composite Structures. 28(1), 99-110.

Google Scholar

[7] Al-Basyouni K., Tounsi A., & Mahmoud S. (2015). Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Composite Structures, 125, 621-630.

DOI: 10.1016/j.compstruct.2014.12.070

Google Scholar

[8] Arbind A., Reddy J., & Srinivasa A. (2014). Modified couple stress-based third-order theory for nonlinear analysis of functionally graded beams. Latin American Journal of Solids and Structures, 11(3), 459-487.

DOI: 10.1590/s1679-78252014000300006

Google Scholar

[9] Attia M.A., & Emam S.A. (2018). Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory. Acta Mechanica, 1-21.

DOI: 10.1007/s00707-018-2162-y

Google Scholar

[10] Ghayesh M.H. (2018). Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. International Journal of Mechanical Sciences, 140, 339-350.

DOI: 10.1016/j.ijmecsci.2018.02.037

Google Scholar

[11] Khorshidi M.A., Shariati M., & Emam S.A. (2016). Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. International Journal of Mechanical Sciences, 110, 160-169.

DOI: 10.1016/j.ijmecsci.2016.03.006

Google Scholar

[12] Shafiei N., Mousavi A., & Ghadiri M. (2016). Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Composite Structures, 149, 157-169.

DOI: 10.1016/j.compstruct.2016.04.024

Google Scholar

[13] Shanab R., Attia M., & Mohamed S. (2017). Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects. International Journal of Mechanical Sciences, 131, 908-923.

DOI: 10.1016/j.ijmecsci.2017.07.055

Google Scholar

[14] Şimşek M., & Reddy J. (2013). Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. International Journal of Engineering Science, 64, 37-53.

DOI: 10.1016/j.ijengsci.2012.12.002

Google Scholar

[15] Thai H.-T., Vo T.P., Nguyen T.-K., & Lee J. (2015). Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Composite Structures, 123, 337-349.

DOI: 10.1016/j.compstruct.2014.11.065

Google Scholar

[16] Trinh L.C., Nguyen H.X., Vo T.P., & Nguyen T.-K. (2016). Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory. Composite Structures, 154, 556-572.

DOI: 10.1016/j.compstruct.2016.07.033

Google Scholar

[17] Gurtin M.E., & Murdoch A.I. (1975). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323.

DOI: 10.1007/bf00261375

Google Scholar

[18] Gurtin M.E., & Murdoch A.I. (1978). Surface stress in solids. International Journal of Solids and Structures, 14(6), 431-440.

DOI: 10.1016/0020-7683(78)90008-2

Google Scholar

[19] Amirian B., Hosseini-Ara R., & Moosavi H. (2014). Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Applied Mathematics and Mechanics, 35(7), 875-886.

DOI: 10.1007/s10483-014-1835-9

Google Scholar

[20] Ansari R., Mohammadi V., Shojaei M.F., Gholami R., & Rouhi H. (2014a). Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. European Journal of Mechanics-A/Solids, 45, 143-152.

DOI: 10.1016/j.euromechsol.2013.11.002

Google Scholar

[21] Ansari R., Mohammadi V., Shojaei M.F., Gholami R., & Sahmani S. (2014b). On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Composites Part B: Engineering, 60, 158-166.

DOI: 10.1016/j.compositesb.2013.12.066

Google Scholar

[22] Ansari R., Pourashraf T., & Gholami R. (2015). An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Structures, 93, 169-176.

DOI: 10.1016/j.tws.2015.03.013

Google Scholar

[23] Attia M.A. (2017). On the mechanics of functionally graded nanobeams with the account of surface elasticity. International Journal of Engineering Science, 115, 73-101.

DOI: 10.1016/j.ijengsci.2017.03.011

Google Scholar

[24] Attia M.A., Shanab R.S., Mohamed S.A., & Mohamed N.A. (2019). Analytical solution for bending of functionally graded Timoshenko nanobeams incorporating surface energy and microstructure effects. East African Scholars Journal of Engineering and Computer Sciences, 2(2), 91-96.

DOI: 10.1016/j.ijmecsci.2017.07.055

Google Scholar

[25] Attia M.A., Shanab R.S., Mohamed S.A., & Mohamed N.A. (2019). Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory. International Journal of Structural Stability and Dynamics: Accepted for publication, https://doi.org/10.1142/S021945541950127X.

DOI: 10.1142/s021945541950127x

Google Scholar

[26] Attia, M.A. (2017). Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica, 52(10), 2391-2420.

DOI: 10.1007/s11012-016-0595-8

Google Scholar

[27] Attia, M.A., & Mahmoud, F.F. (2016). Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories. International Journal of Mechanical Sciences, 105, 126-134.

DOI: 10.1016/j.ijmecsci.2015.11.002

Google Scholar

[28] Attia, M.A., & Mahmoud, F.F. (2017). Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects. International Journal of Mechanical Sciences, 123, 117-132.

DOI: 10.1016/j.ijmecsci.2017.01.045

Google Scholar

[29] Attia, M.A., & Mohamed, S.A. (2017). Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory. Applied Mathematical Modelling, 41, 195-222.

DOI: 10.1016/j.apm.2016.08.036

Google Scholar

[30] Attia, M.A., & Mohamed, S.A. (2018). Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces. International Journal of Applied Mechanics, 10(08), 1850091. https://doi.org/10.1142 /S1758825118500916.

DOI: 10.1142/s1758825118500916

Google Scholar

[31] Attia, M.A., & Rahman, A.A. (2018). On vibrations of functionally graded viscoelastic nanobeams with surface effects. International Journal of Engineering Science, 127, 1-32.

DOI: 10.1016/j.ijengsci.2018.02.005

Google Scholar

[32] Attia, M.A., & Mohamed, S.A. (2019). Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches. Acta Mechanica, 230(3), 1181-1216.

DOI: 10.1007/s00707-018-2345-6

Google Scholar

[33] Dai H., Zhao D., Zou J., & Wang L. (2016). Surface effect on the nonlinear forced vibration of cantilevered nanobeams. Physica E: Low-dimensional Systems and Nanostructures, 80, 25-30.

DOI: 10.1016/j.physe.2016.01.008

Google Scholar

[34] Eltaher M., Mahmoud F., Assie A., & Meletis E. (2013). Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Applied Mathematics and Computation, 224, 760-774.

DOI: 10.1016/j.amc.2013.09.002

Google Scholar

[35] Gao X.-L., & Mahmoud F. (2014). A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Zeitschrift für angewandte Mathematik und Physik, 65(2), 393-404.

DOI: 10.1007/s00033-013-0343-z

Google Scholar

[36] Gao X.-L. (2015). A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mechanica, 226(2), 457-474.

DOI: 10.1007/s00707-014-1189-y

Google Scholar

[37] Ghadiri M., Shafiei N., & Akbarshahi A. (2016). Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Applied Physics A, 122(7), 673.

DOI: 10.1007/s00339-016-0196-3

Google Scholar

[38] Gheshlaghi B., & Hasheminejad S.M. (2011). Surface effects on nonlinear free vibration of nanobeams. Composites Part B: Engineering, 42(4), 934-937.

DOI: 10.1016/j.compositesb.2010.12.026

Google Scholar

[39] Hosseini-Hashemi S., Nahas I., Fakher M., & Nazemnezhad R. (2014a). Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mechanica, 225(6), 1555-1564.

DOI: 10.1007/s00707-013-1014-z

Google Scholar

[40] Hosseini-Hashemi S., & Nazemnezhad R. (2013). An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Composites Part B: Engineering, 52, 199-206.

DOI: 10.1016/j.compositesb.2013.04.023

Google Scholar

[41] Hosseini-Hashemi S., Nazemnezhad R., & Bedroud M. (2014b). Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Applied Mathematical Modelling, 38(14), 3538-3553.

DOI: 10.1016/j.apm.2013.11.068

Google Scholar

[42] Nazemnezhad R., & Hosseini-Hashemi S. (2015). Nonlinear free vibration analysis of Timoshenko nanobeams with surface energy. Meccanica, 50(4), 1027-1044.

DOI: 10.1007/s11012-014-9992-z

Google Scholar

[43] Kasirajan P., Amirtham R., & Reddy J.N. (2015). Surface and non-local effects for non-linear analysis of Timoshenko beams. International Journal of Non-Linear Mechanics, 76, 100-111.

DOI: 10.1016/j.ijnonlinmec.2015.06.006

Google Scholar

[44] Sahmani S., Bahrami M., & Ansari R. (2014). Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Composite Structures, 116, 552-561.

DOI: 10.1016/j.compstruct.2014.05.035

Google Scholar

[45] Wang G.-F., & Feng X.-Q. (2009). Timoshenko beam model for buckling and vibration of nanowires with surface effects. Journal of physics D: applied physics, 42(15), 155411.

DOI: 10.1088/0022-3727/42/15/155411

Google Scholar

[46] Wang K., Zeng S., & Wang B. (2017). Large amplitude free vibration of electrically actuated nanobeams with surface energy and thermal effects. International Journal of Mechanical Sciences, 131, 227-233.

DOI: 10.1016/j.ijmecsci.2017.06.049

Google Scholar

[47] Youcef O., Kaci A., Benzair A., Bousahla A.A., & Tounsi A. (2018). Dynamic analysis of nanoscale beams including surface stress effects. Smart structures and systems. 21(1), 65-74.

Google Scholar

[48] Chen W., Lü C., & Bian Z. (2004). A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10), 877-890.

DOI: 10.1016/j.apm.2004.04.001

Google Scholar

[49] Malekzadeh P., & Karami G. (2008). A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Applied Mathematical Modelling, 32(7), 1381-1394.

DOI: 10.1016/j.apm.2007.04.019

Google Scholar

[50] Mohamed S., Shanab R., & Seddek L. (2016). Vibration analysis of Euler–Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method. Applied Mathematical Modelling, 40(3), 2396-2406.

DOI: 10.1016/j.apm.2015.08.019

Google Scholar

[51] Demir C., Mercan K., Numanoglu H.M., & Civalek O. (2018). Bending response of nanobeams resting on elastic foundation. Journal of Applied and Computational Mechanics, 4(2), 105-114.

Google Scholar

[52] Akgöz B., & Civalek Ö. (2015). Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Composite Structures, 134, 294-301.

DOI: 10.1016/j.compstruct.2015.08.095

Google Scholar

[53] Avcar M., & Mohammed W.K.M. (2018). Free vibration of functionally graded beams resting on Winkler-Pasternak foundation. Arabian Journal of Geosciences, 11(10), 232.

DOI: 10.1007/s12517-018-3579-2

Google Scholar

[54] Chaabane L., Bourada F., Sekkal M., Zerouati S., Zaoui F., Tounsi A., Derras A., Bousahla A. & Tounsi A. (2019). Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71(2), 185-196.

Google Scholar

[55] Bakhadda B., Bouiadjra M.B., Bourada F., Bousahla A., Tounsi A., & Mahmoud S. (2018). Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation. Wind and Structures. 27(5), 311-324.

Google Scholar

[56] Yazid M., Heireche H., Tounsi A., Bousahla A., & Houari A. (2018). A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart structures and systems. 21(1), 15-25.

DOI: 10.2174/2405461501666161130121643

Google Scholar

[57] Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A., & Houari, M.S.A. (2018). Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. In Journal of Nano Research, 55: 42-56. Trans Tech Publications.

DOI: 10.4028/www.scientific.net/jnanor.55.42

Google Scholar

[58] Attia, M.A., & Mahmoud, F.F. (2017). Analysis of viscoelastic Bernoulli–Euler nanobeams incorporating nonlocal and microstructure effects. International Journal of Mechanics and Materials in Design, 13(3), 385-406.

DOI: 10.1007/s10999-016-9343-4

Google Scholar

[59] Attia A., Bousahla A., Tounsi A., Mahmoud S., & Alwabli S. (2018). A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations. Structural Engineering and Mechanics. 65(4), 453-464.

DOI: 10.12989/sss.2016.18.4.755

Google Scholar

[60] Boulefrakh L., Hebali H., Chikh A., Bousahla A., Tounsi A., & Mahmoud S. (2019). The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomechanics and Engineering. 18(2), 161-178.

Google Scholar

[61] Beldjelili Y., Tounsi A., & Mahmoud S. (2016). Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Structures and Systems. 18(4), 755-786.

DOI: 10.12989/sss.2016.18.4.755

Google Scholar

[62] Bounouara F., Benrahou H., Belkorissat I., & Tounsi A. (2016). A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel and Composite Structures. 20(2), 227-249.

DOI: 10.12989/scs.2016.20.2.227

Google Scholar

[63] Zaoui F., Ouinas D., & Tounsi A. (2019).  New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Composites Part B: Engineering, 159: pp.231-247.

DOI: 10.1016/j.compositesb.2018.09.051

Google Scholar

[64] Arbind A., & Reddy J. (2013). Nonlinear analysis of functionally graded microstructure-dependent beams. Composite Structures, 98, 272-281.

DOI: 10.1016/j.compstruct.2012.10.003

Google Scholar

[65] Reddy J. (2011). Microstructure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics and Physics of Solids, 59(11), 2382-2399.

DOI: 10.1016/j.jmps.2011.06.008

Google Scholar

[66] Wang C., Lam K., & He X. (1998). Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green's Functions∗. Journal of Structural Mechanics, 26(1), 101-113.

DOI: 10.1080/08905459808945422

Google Scholar

[67] Ansari R., & Sahmani S. (2011). Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. International Journal of Engineering Science, 49(11), 1244-1255.

DOI: 10.1016/j.ijengsci.2011.01.007

Google Scholar

[68] Matsunaga H. (1999). Vibration and buckling of deep beam-columns on two-parameter elastic foundations. Journal of Sound and Vibration, 228(2), 359-376.

DOI: 10.1006/jsvi.1999.2415

Google Scholar

[69] Ebrahimi F., & Salari E. (2015). Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Composites Part B: Engineering, 79, 156-169.

DOI: 10.1016/j.compositesb.2015.04.010

Google Scholar

[70] Eltaher M., Emam S.A., & Mahmoud F. (2012). Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, 218(14), 7406-7420.

DOI: 10.1016/j.amc.2011.12.090

Google Scholar

[71] De Rosa M., & Maurizi M. (1998). The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams—exact solution. Journal of Sound and Vibration, 212(4), 573-581.

DOI: 10.1006/jsvi.1997.1424

Google Scholar

[72] Cherif R., Meradjah M., Zidour M., Tounsi A., Belmahi S., & Bensattalah T. (2018). Vibration analysis of nano beam using differential transform method including thermal effect. Journal of Nano Research. 54, 1-14.

DOI: 10.4028/www.scientific.net/jnanor.54.1

Google Scholar