[1]
Adams, F.C. and C. Barbante, Nanoscience, nanotechnology and spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy. 86 (2013), 3-13.
DOI: 10.1016/j.sab.2013.04.008
Google Scholar
[2]
Wilson, M., et al., Nanotechnology: basic science and emerging technologies. 2002: CRC Press.
Google Scholar
[3]
Feynman, R.P., There's plenty of room at the bottom: An invitation to enter a new field of physics, in Handbook of Nanoscience, Engineering, and Technology, Third Edition. 2012, CRC Press. pp.26-35.
DOI: 10.1201/b11930-3
Google Scholar
[4]
Bainbridge, W.S., Converging technologies for improving human performance: Nanotechnology, biotechnology, information technology and cognitive science. 2013: Springer Science & Business Media.
Google Scholar
[5]
Wilkinson, J., Nanotechnology applications in medicine. Medical device technology. 14 (2003) 5, 29-31.
Google Scholar
[6]
Mathew, J., J. Joy, and S.C. George, Potential applications of nanotechnology in transportation: A review. Journal of King Saud University - Science,(2018).
DOI: 10.1016/j.jksus.2018.03.015
Google Scholar
[7]
Serrano, E., G. Rus, and J. García-Martínez, Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews. 13 (2009) 9, 2373-2384.
DOI: 10.1016/j.rser.2009.06.003
Google Scholar
[8]
Duncan, T.V., Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science. 363 (2011) 1, 1-24.
DOI: 10.1016/j.jcis.2011.07.017
Google Scholar
[9]
Wesley, S.J., et al., Review on-nanotechnology applications in food packaging and safety. Int J Eng Res. 3 (2014) 11, 645-651.
Google Scholar
[10]
Joshi, M., A. Bhattacharyya, and S.W. Ali, Characterization techniques for nanotechnology applications in textiles. (2008).
Google Scholar
[11]
Qu, X., P.J. Alvarez, and Q. Li, Applications of nanotechnology in water and wastewater treatment. Water research. 47 (2013) 12, 3931-3946.
DOI: 10.1016/j.watres.2012.09.058
Google Scholar
[12]
Pradhan, S., Comparative analysis of Silver Nanoparticles prepared from Different Plant extracts (Hibiscus rosa sinensis, Moringa oleifera, Acorus calamus, Cucurbita maxima, Azadirachta indica) through green synthesis method, (2013).
Google Scholar
[13]
Shipway, A.N., E. Katz, and I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. chemphyschem. 1 (2000) 1, 18-52.
DOI: 10.1002/1439-7641(20000804)1:1<18::aid-cphc18>3.0.co;2-l
Google Scholar
[14]
Subramanian, V., H. Zhu, and B. Wei, Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chemical Physics Letters. 453 (2008) 4, 242-249.
DOI: 10.1016/j.cplett.2008.01.042
Google Scholar
[15]
Valerini, D., et al., Optical gas sensing through nanostructured ZnO films with different morphologies. Sensors and Actuators B: Chemical. 145 (2010) 1, 167-173.
DOI: 10.1016/j.snb.2009.11.064
Google Scholar
[16]
Reddy, A.L.M., et al., Hybrid nanostructures for energy storage applications. Advanced Materials. 24 (2012) 37, 5045-5064.
Google Scholar
[17]
Iijima, S., Helical microtubules of graphitic carbon. Nature. 354 (1991) 6348, 56-58.
DOI: 10.1038/354056a0
Google Scholar
[18]
Yang, W., et al., Carbon nanotubes for biological and biomedical applications. Nanotechnology. 18 (2007) 41, 412001.
Google Scholar
[19]
Pantarotto, D., et al., Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications,(2004) 1, 16-17.
Google Scholar
[20]
Hou, P.-X., C. Liu, and H.-M. Cheng, Purification of carbon nanotubes. Carbon. 46 (2008) 15, 2003-2025.
DOI: 10.1016/j.carbon.2008.09.009
Google Scholar
[21]
Eringen, A.C. and D. Edelen, On nonlocal elasticity. International Journal of Engineering Science. 10 (1972) 3, 233-248.
DOI: 10.1016/0020-7225(72)90039-0
Google Scholar
[22]
Hamidi, B.A., et al., An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses,(2019), 1-18.
DOI: 10.1080/01495739.2019.1666694
Google Scholar
[23]
Namvar, M., et al., Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory. The European Physical Journal Plus. 132 (2017) 6, 247.
DOI: 10.1140/epjp/i2017-11518-5
Google Scholar
[24]
Park, S. and X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering. 16 (2006) 11, 2355.
DOI: 10.1088/0960-1317/16/11/015
Google Scholar
[25]
Rahmani, O., et al., Free vibration of deep curved FG nano-beam based on modified couple stress theory. Steel and Composite Structures. 26 (2018) 5, 607-620.
Google Scholar
[26]
Adeli, M.M., et al., Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. The European Physical Journal Plus. 132 (2017) 9, 393.
DOI: 10.1140/epjp/i2017-11688-0
Google Scholar
[27]
Karami, B., M. Janghorban, and A. Tounsi, Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel and composite structures. 27 (2018) 2, 201-216.
Google Scholar
[28]
Narendar, S., S. Ravinder, and S. Gopalakrishnan, Strain gradient torsional vibration analysis of micro/nano rods. International Journal of Nano Dimension. 3 (2012) 1, 1-17.
Google Scholar
[29]
Rahmani, O., et al., Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties. Applied Physics A. 123 (2017) 1, 4.
DOI: 10.1007/s00339-016-0591-9
Google Scholar
[30]
Ansari, R., et al., Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mechanica Sinica. 31 (2015) 5, 708-719.
DOI: 10.1007/s10409-015-0435-4
Google Scholar
[31]
Rahmani, O., S. Asemani, and S. Hosseini, Study the surface effect on the buckling of nanowires embedded in Winkler–Pasternak elastic medium based on a nonlocal theory. (2016).
Google Scholar
[32]
Rahmani, O., S.A.H. Hosseini, and H. Hayati, Frequency analysis of curved nano-sandwich structure based on a nonlocal model. Modern Physics Letters B. 30 (2016) 10, 1650136.
DOI: 10.1142/s0217984916501360
Google Scholar
[33]
Hayati, H., S.A. Hosseini, and O. Rahmani, Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory. Microsystem Technologies. 23 (2017) 7, 2393-2401.
DOI: 10.1007/s00542-016-2933-0
Google Scholar
[34]
Zarepour, M., S.A.H. Hosseini, and A.H. Akbarzadeh, Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model. Applied Mathematical Modelling. 69 (2019), 563-582.
DOI: 10.1016/j.apm.2019.01.001
Google Scholar
[35]
Rahmani, O., et al., Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory. STEEL AND COMPOSITE STRUCTURES. 27 (2018) 3, 371-388.
Google Scholar
[36]
Rahmani, O., et al., Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. The European Physical Journal Plus. 133 (2018) 2, 42.
DOI: 10.1140/epjp/i2018-11868-4
Google Scholar
[37]
Ghadiri, M., et al., In-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity. Journal of Solid Mechanics Vol. 10 (2018) 2, 285-299.
Google Scholar
[38]
Hosseini, S. and O. Rahmani, Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construction Research. 2 (2018) 2, 1-17.
DOI: 10.18063/scr.v0.401
Google Scholar
[39]
Ghadiri, M., et al., In-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity. Journal of Solid Mechanics. 10 (2018) 2, 285-299.
Google Scholar
[40]
Rahmani, O., et al., Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects. Mechanics of Advanced Materials and Structures. 24 (2017) 15, 1274-1291.
DOI: 10.1080/15376494.2016.1227504
Google Scholar
[41]
Rahmani, O., S. Hosseini, and M. Parhizkari, Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: an analytical approach. Microsystem Technologies. 23 (2017) 7, 2739-2751.
DOI: 10.1007/s00542-016-3127-5
Google Scholar
[42]
Zarepour, M., S.A. Hosseini, and M.R. Kokaba, Electro-thermo-mechanical nonlinear free vibration of nanobeam resting on the winkler-pasternak foundations based on nonlocal elasticity using differential transform method. Microsystem Technologies,(2016), 1-8.
DOI: 10.1007/s00542-016-2935-y
Google Scholar
[43]
Aydogdu, M., Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research Communications. 43 (2012), 34-40.
DOI: 10.1016/j.mechrescom.2012.02.001
Google Scholar
[44]
Filiz, S. and M. Aydogdu, Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Computational Materials Science. 49 (2010) 3, 619-627.
DOI: 10.1016/j.commatsci.2010.06.003
Google Scholar
[45]
Thai, H.-T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science. 52 (2012), 56-64.
DOI: 10.1016/j.ijengsci.2011.11.011
Google Scholar
[46]
Thai, H.-T. and T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science. 54 (2012), 58-66.
DOI: 10.1016/j.ijengsci.2012.01.009
Google Scholar
[47]
Kiani, K., Nonlocal continuous models for forced vibration analysis of two-and three-dimensional ensembles of single-walled carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures. 60 (2014), 229-245.
DOI: 10.1016/j.physe.2014.01.033
Google Scholar
[48]
Eltaher, M., S.A. Emam, and F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation. 218 (2012) 14, 7406-7420.
DOI: 10.1016/j.amc.2011.12.090
Google Scholar
[49]
Fantuzzi, N., et al., Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Composites Part B: Engineering. 115 (2017), 384-408.
DOI: 10.1016/j.compositesb.2016.09.021
Google Scholar
[50]
Wu, J.-X., et al., Free and forced transverse vibration of nanowires with surface effects. Journal of Vibration and Control. 23 (2017) 13, 2064-2077.
DOI: 10.1177/1077546315610302
Google Scholar
[51]
Şimşek, M., Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Computational Materials Science. 61 (2012), 257-265.
DOI: 10.1016/j.commatsci.2012.04.001
Google Scholar
[52]
Gheshlaghi, B. and S.M. Hasheminejad, Vibration analysis of piezoelectric nanowires with surface and small scale effects. Current applied physics. 12 (2012) 4, 1096-1099.
DOI: 10.1016/j.cap.2012.01.014
Google Scholar
[53]
Danesh, M., A. Farajpour, and M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mechanics Research Communications. 39 (2012) 1, 23-27.
DOI: 10.1016/j.mechrescom.2011.09.004
Google Scholar
[54]
Askari, H., E. Esmailzadeh, and D. Zhang, Nonlinear vibration analysis of nonlocal nanowires. Composites Part B: Engineering. 67 (2014), 607-613.
DOI: 10.1016/j.compositesb.2014.08.017
Google Scholar
[55]
Kiani, K., Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique. Physica E: Low-Dimensional Systems and Nanostructures. 43 (2010) 1, 387-397.
DOI: 10.1016/j.physe.2010.08.022
Google Scholar
[56]
Lim, C.W., C. Li, and J. Yu, Free torsional vibration of nanotubes based on nonlocal stress theory. Journal of Sound and Vibration. 331 (2012) 12, 2798-2808.
DOI: 10.1016/j.jsv.2012.01.016
Google Scholar
[57]
Khademolhosseini, F., et al., Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes. IEEE Transactions on Nanotechnology. 11 (2012) 1, 34-43.
DOI: 10.1109/tnano.2011.2111380
Google Scholar
[58]
Mohammadimehr, M., et al., Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory. Journal of Mechanical Science and Technology. 24 (2010) 6, 1289-1299.
DOI: 10.1007/s12206-010-0331-6
Google Scholar
[59]
Li, C., Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model. International Journal of Mechanical Sciences. 82 (2014), 25-31.
DOI: 10.1016/j.ijmecsci.2014.02.023
Google Scholar
[60]
Guo, S., et al., Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect. International Journal of Mechanical Sciences. 119 (2016), 88-96.
DOI: 10.1016/j.ijmecsci.2016.09.036
Google Scholar
[61]
Li, C., A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Composite Structures. 118 (2014), 607-621.
DOI: 10.1016/j.compstruct.2014.08.008
Google Scholar
[62]
Li, L. and Y. Hu, Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Composite Structures. 172 (2017), 242-250.
DOI: 10.1016/j.compstruct.2017.03.097
Google Scholar
[63]
Sahmani, S., M. Bahrami, and M. Aghdam, Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to torsional load. Composites Part B: Engineering. 84 (2016), 140-154.
DOI: 10.1016/j.compositesb.2015.08.076
Google Scholar
[64]
Arda, M. and M. Aydogdu, Torsional statics and dynamics of nanotubes embedded in an elastic medium. Composite Structures. 114 (2014), 80-91.
DOI: 10.1016/j.compstruct.2014.03.053
Google Scholar
[65]
Arda, M. and M. Aydogdu, Analysis of free torsional vibration in carbon nanotubes embedded in a viscoelastic medium. Advances in science and technology research journal. 9 (2015) 26.
DOI: 10.12913/22998624/2361
Google Scholar
[66]
Arda, M. and M. Aydogdu, Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity. Applied Physics A. 122 (2016) 3, 219.
DOI: 10.1007/s00339-016-9751-1
Google Scholar
[67]
Aydogdu, M. and M. Arda, Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. International Journal of Mechanics and Materials in Design. 12 (2016) 1, 71-84.
DOI: 10.1007/s10999-014-9292-8
Google Scholar
[68]
Arda, M. and M. Aydogdu, Torsional vibration of double CNT system embedded in an elastic medium. Noise Theory and Practice. 4 (2018) 4.
Google Scholar
[69]
Arda, M. and M. Aydogdu, Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium. Microsystem Technologies. 25 (2019) 10, 3943-3957.
DOI: 10.1007/s00542-019-04446-8
Google Scholar
[70]
Mir, M., A. Hosseini, and G. Majzoobi, A numerical study of vibrational properties of single-walled carbon nanotubes. Computational Materials Science. 43 (2008) 3, 540-548.
DOI: 10.1016/j.commatsci.2007.12.024
Google Scholar
[71]
Ruoff, R.S., D. Qian, and W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Physique. 4 (2003) 9, 993-1008.
DOI: 10.1016/j.crhy.2003.08.001
Google Scholar
[72]
El Khoury, E., T. Messager, and P. Cartraud, Derivation Of The Young's And Shear Moduli Ofsingle-Walled Carbon Nanotubes Through A Computational Homogenization Approach. International Journal for Multiscale Computational Engineering. 9 (2011) 1.
DOI: 10.1615/intjmultcompeng.v9.i1.80
Google Scholar