Electrochemical Analysis of Architecturally Enhanced Life0.5Mn0.5PO4 Multi-Walled Carbon Nanotube Composite

Article Preview

Abstract:

In this work, the effect of carbon on the electrochemical properties of multi-walled carbon nanotube (MWCNT) functionalized Lithium iron manganese phosphate was studied. In an attempt to provide insight into the structural and electronic properties of optimized electrode materials a systematic study based on a combination of structural and spectroscopic techniques. The phosphor-olivine LiFe0.5Mn0.5PO4, was synthesized via a simple microwave synthesis using LiFePO4 and LiMnPO4 as precursors. Cyclic voltammetry was used to evaluate the electrochemical parameters (electron transfer and ionic diffusivity) of the LiFe0.5Mn0.5PO4 redox couples. The redox potentials show two separate distinct redox peaks that correspond to Mn2+/Mn3+ (4.1 V vs Li/Li+) and Fe2+/Fe3+ (3.5 V vs Li/Li+) due to interaction arrangement of Fe-O-Mn in the olivine lattice. The electrochemical impedance spectroscopy (EIS) results showed LiFe0.5Mn0.5PO4-MWCNTs having high conductivity with reduced charge resistance. This result demonstrates that MWCNTs stimulates faster electron transfer and stability for the LiFe0.5Mn0.5PO4 framework, which demonstrates favorable as a host material for Li+ ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Zaghib, A. Mauger, C.M. Julien, livine-based cathode materials. In Green Energy, Technology: Rechargeable Batteries Materials, Technologies and New Trends; Zhang, Z., Zhang, S.S., Eds.; Springer Science: Hoboken, NJ, USA, 2015, p.25–6.

DOI: 10.1007/978-3-319-15458-9_2

Google Scholar

[2] A. S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nat. Mater. 4 (2005) 366-377.

DOI: 10.1038/nmat1368

Google Scholar

[3] N. Ross, N. Myra, W. Ntuthuko, C. Ikpo, P. Baker, E. Iwuoha, Palladium-Gold Nanoalloy Surface Modified LiMn2O4 Cathode for Enhanced Li-Ion Battery. J. Nanomat. 613124 (2015) 6.

DOI: 10.1155/2015/613124

Google Scholar

[4] D. Aurbach, Y. Ein‐Ely, A. Zaban, The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions, Electrochem. Soc. 141 (2012) L1-L3.

DOI: 10.1149/1.2054718

Google Scholar

[5] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley New York (1980), ISBN: 978-0-471-04372-0.

Google Scholar

[6] M. Zhao, G. Huang, B. Zhang, F. Wang, X. Song, Characteristics and electrochemical performance of LiFe0.5Mn0.5PO4/C used as cathode for aqueous rechargeable lithium battery, J. Power Sources. 211 (2012) 202-207.

DOI: 10.1016/j.jpowsour.2012.03.049

Google Scholar

[7] F.F. Bazito, R.M. Torresi, Cathodes for Lithium Ion Batteries: The Benefits of Using Nanostructured Materials, J. Braz. Chem. Soc. 17 (2006) 627-642.

DOI: 10.1590/s0103-50532006000400002

Google Scholar

[8] E. Benbow, S. Kelly, L. Zhao, J. Reutenauer, S. Suib, Oxygen Reduction Properties of Bifunctional Α-Manganese Oxide Electrocatalysts In Aqueous and Organic Electrolytes, J. Phys. Chem. C. 115 (2011) 22009-22017.

DOI: 10.1021/jp2055443

Google Scholar

[9] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries, ACIEAY. 47 (2008) 2930-2946.

DOI: 10.1002/anie.200702505

Google Scholar

[10] H. Chan, J. Duh, S. Sheen, LiMn2O4 Cathode Doped with Excess Lithium and Synthesized by Co-Precipitation for Li-Ion Batteries, J. Power Sources. 115 (2003) 110-118.

DOI: 10.1016/s0378-7753(02)00616-x

Google Scholar

[11] H.W. Chan, J.G. Duh, S.R. Sheen, S.Y. Tsai, C.R. Lee, New Surface Modified Material for LiMn2O4 Cathode Material in Li-Ion Battery, Surf. Coat. Technol. 200 (2005)1330-1334.

DOI: 10.1016/j.surfcoat.2005.10.026

Google Scholar

[12] A. Churikov, E. Kachibaya, V. Sycheva, I. Ivanishcheva, R. Imnadze, T. Paikidze, A. Ivanishchev, Electrochemical Properties of LiMn2−YMeYO4 (Me= Cr, Co, Ni) Spinels as Cathodic Materials for Lithium-Ion Batteries, Russ. J. Electrochem. 45 (2009)175-182.

DOI: 10.1134/s1023193509020086

Google Scholar

[13] J. Dahn, E. Fuller, M. Obrovac, U. Von Sacken, Thermal Stability of LixCoO2, LixNiO2 and Λ-MnO2 and consequences for the safety of Li-Ion cells. Solid State Ion. 69 (1994) 265-270.

DOI: 10.1016/0167-2738(94)90415-4

Google Scholar

[14] M.C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, And Applications Toward Biology, Catalysis, And Nanotechnology, Chem. Rev. 104 (2004) 293-346.

DOI: 10.1021/cr030698+

Google Scholar

[15] M.M. Doeff, Battery Cathodes. Batteries for Sustainability. Springer. (2013).

Google Scholar

[16] M. Dresselhaus, I.L. Thomas, Alternative energy technologies, Nat. 414 (2001) 332-337.

Google Scholar

[17] A. Eftekhari, Mixed-Metals Co-deposition As A Novel Method for The Preparation of LiMn2O4 Electrodes with Reduced Capacity Fades, J. Electrochem. Soc. 150 (2003) A966-A969.

DOI: 10.1149/1.1580817

Google Scholar

[18] G. Eichinger, J.O. Besenhard, High Energy Density Lithium Cells: Part Ii. Cathodes and Complete Cells. J. Electroanal. Chem. Interfac. Electrochem. 72 (1976)1-31.

DOI: 10.1002/chin.197645014

Google Scholar

[19] Y. Ein-Eli, R. Urian, W. Wen, S. Mukerjee, Low Temperature Performance of Copper/Nickel Modified LiMn2O4 Spinels, Electrochim. Acta. 50 (2005) 1931-1937.

DOI: 10.1016/j.electacta.2004.09.002

Google Scholar

[20] S.H. Changa, K.S. Ryua, K.M. Kima., M.S. KimbI, K.S. Kimb, G. Kanga, Electrochemical Properties of Cobalt-Exchanged Spinel Lithium Manganese Oxide, J. Power Sources. 84 (1999) 134-137.

DOI: 10.1016/s0378-7753(99)00307-9

Google Scholar

[21] M. Saulnier, A. Auclair, G. Liang, S.B. Schougaard, Manganese dissolution in lithium-ion positive electrode materials, Solid State Ion. 294 (2016) 1–5.

DOI: 10.1016/j.ssi.2016.06.007

Google Scholar

[22] P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4, Solid State Ion. 148 (2002) 45–51.

DOI: 10.1016/s0167-2738(02)00134-0

Google Scholar

[23] R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals, Solid-State Lett. 10 (2007) A13–A16.

DOI: 10.1149/1.2388240

Google Scholar

[24] C. Delmas, M. Maccario, L. Croguennec, F.L. Cras, F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nat. Mater. 7 (2008) 665–671.

DOI: 10.1038/nmat2230

Google Scholar

[25] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites, J Electrochem Soc. 152 (2005)A607–A610.

DOI: 10.1149/1.1860492

Google Scholar

[26] J.W. Fergus, Recent Developments in Cathode Materials for Lithium Ion Batteries, J. Power Sources. 195 (2010) 939-954.

DOI: 10.1016/j.jpowsour.2009.08.089

Google Scholar

[27] R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev. 108 (2008) 845-910.

DOI: 10.1021/cr040090g

Google Scholar

[28] J. Wang, S. Xueliang, Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ Sci. 8 (2015) 1110–1138.

DOI: 10.1039/c4ee04016c

Google Scholar

[29] C. Hou, J. Hou, H. Zhang, Y. Ma, X. He, W. Geng, Q. Zhang, Facile Synthesis of LiMn0.75Fe0.25PO4/C, Nanocomposite Cathode Materials of Lithium-Ion Batteries through Microwave Sintering, Eng. Sci, 11 (2020)36-43.

Google Scholar

[30] A. Paolella, G. Bertoni, S. Marras, E. Dilena, M. Colombo, M. Prato, A. Riedinger, M. Povia, A. Ansaldo, K. Zaghib, L. Manna, C. George, Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes, Nano Lett. 14 (2014) 6828–6835.

DOI: 10.1021/nl504093w

Google Scholar

[31] A. Robin, H. Stephane, H. Darko, C. Matthieu, D. Robert, M. Christian, Nonstochiometry in LiFe0.5Mn0.5PO4: Structural and Electrochemical Properties, J. Electrochem. Soc. 160 (2013) A1446-A1450.

Google Scholar

[32] I. Mustafa, R. Susantyoko, C. Wu, F. Ahmed, R. Hashaikeh, F. Almarzooqi, S. Almheiri, Nanoscopic and Macro-porous carbon nano-foam electrodes with improved Mass transport for Vanadium Redox flow Batteries, Sci. Reports. 9 (2019) 17655.

DOI: 10.1038/s41598-019-53491-w

Google Scholar

[33] D. Di Lecce, J. Hassoun, Lithium Metal Battery Using LiFe0.5Mn0.5PO4 Olivine Cathode and Pyrrolidinium-Based Ionic Liquid Electrolyte, ACS Omega. 8 (2018) 8583–8588.

DOI: 10.1021/acsomega.8b01328

Google Scholar

[34] K. Zaghib, F. Mauger, M. Gendron, C. Massot, M. Julien, Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries, Ionics, 14 (2008) 371–376.

DOI: 10.1007/s11581-008-0231-2

Google Scholar

[35] M. Abha, K. Tyagi, P. Rai, D.S. Misra, FTIR Spectroscopy of Multiwalled Carbon Nanotubes: A Simple Approach to Study the Nitrogen Doping, J. Nanosci. 7 (2007) 1820–1823.

DOI: 10.1166/jnn.2007.723

Google Scholar

[36] M. B. Christopher, F. Roger, Vibrational spectroscopic investigation of structurally-related LiFePO4, NaFePO4, and FePO4 compound, SSA. 65 (2006) 44-50.

DOI: 10.1016/j.saa.2005.09.025

Google Scholar

[37] D. Guyomard, J. Tarascon, The Carbon/Li1+XMn2O system, Solid State Ion. 69 (1994) 222-237.

DOI: 10.1016/0167-2738(94)90412-x

Google Scholar

[38] H. Manjunatha, T.V. Venkatesha, G.S. Suresh, G.S, Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode, J Solid State Electrochem. 16 (2012)1941–(1952).

DOI: 10.1007/s10008-011-1593-3

Google Scholar

[39] G.J. Wang, Q.T. Qu, B. Wang, Y. Shi, S. Tian, Y.P. Wu, R. Holze, Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution, Electrochim. Act. 54 (2009) 1199–1203.

DOI: 10.1016/j.electacta.2008.08.047

Google Scholar

[40] N. West, I.K. Ozoemena, O.C. Ikpo, G.L.P. Baker, E.I. Iwuoha, Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes, Electrochimica Acta. 101(2013) 86–92.

DOI: 10.1016/j.electacta.2012.11.085

Google Scholar