[1]
K. Zaghib, A. Mauger, C.M. Julien, livine-based cathode materials. In Green Energy, Technology: Rechargeable Batteries Materials, Technologies and New Trends; Zhang, Z., Zhang, S.S., Eds.; Springer Science: Hoboken, NJ, USA, 2015, p.25–6.
DOI: 10.1007/978-3-319-15458-9_2
Google Scholar
[2]
A. S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nat. Mater. 4 (2005) 366-377.
DOI: 10.1038/nmat1368
Google Scholar
[3]
N. Ross, N. Myra, W. Ntuthuko, C. Ikpo, P. Baker, E. Iwuoha, Palladium-Gold Nanoalloy Surface Modified LiMn2O4 Cathode for Enhanced Li-Ion Battery. J. Nanomat. 613124 (2015) 6.
DOI: 10.1155/2015/613124
Google Scholar
[4]
D. Aurbach, Y. Ein‐Ely, A. Zaban, The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions, Electrochem. Soc. 141 (2012) L1-L3.
DOI: 10.1149/1.2054718
Google Scholar
[5]
A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley New York (1980), ISBN: 978-0-471-04372-0.
Google Scholar
[6]
M. Zhao, G. Huang, B. Zhang, F. Wang, X. Song, Characteristics and electrochemical performance of LiFe0.5Mn0.5PO4/C used as cathode for aqueous rechargeable lithium battery, J. Power Sources. 211 (2012) 202-207.
DOI: 10.1016/j.jpowsour.2012.03.049
Google Scholar
[7]
F.F. Bazito, R.M. Torresi, Cathodes for Lithium Ion Batteries: The Benefits of Using Nanostructured Materials, J. Braz. Chem. Soc. 17 (2006) 627-642.
DOI: 10.1590/s0103-50532006000400002
Google Scholar
[8]
E. Benbow, S. Kelly, L. Zhao, J. Reutenauer, S. Suib, Oxygen Reduction Properties of Bifunctional Α-Manganese Oxide Electrocatalysts In Aqueous and Organic Electrolytes, J. Phys. Chem. C. 115 (2011) 22009-22017.
DOI: 10.1021/jp2055443
Google Scholar
[9]
P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries, ACIEAY. 47 (2008) 2930-2946.
DOI: 10.1002/anie.200702505
Google Scholar
[10]
H. Chan, J. Duh, S. Sheen, LiMn2O4 Cathode Doped with Excess Lithium and Synthesized by Co-Precipitation for Li-Ion Batteries, J. Power Sources. 115 (2003) 110-118.
DOI: 10.1016/s0378-7753(02)00616-x
Google Scholar
[11]
H.W. Chan, J.G. Duh, S.R. Sheen, S.Y. Tsai, C.R. Lee, New Surface Modified Material for LiMn2O4 Cathode Material in Li-Ion Battery, Surf. Coat. Technol. 200 (2005)1330-1334.
DOI: 10.1016/j.surfcoat.2005.10.026
Google Scholar
[12]
A. Churikov, E. Kachibaya, V. Sycheva, I. Ivanishcheva, R. Imnadze, T. Paikidze, A. Ivanishchev, Electrochemical Properties of LiMn2−YMeYO4 (Me= Cr, Co, Ni) Spinels as Cathodic Materials for Lithium-Ion Batteries, Russ. J. Electrochem. 45 (2009)175-182.
DOI: 10.1134/s1023193509020086
Google Scholar
[13]
J. Dahn, E. Fuller, M. Obrovac, U. Von Sacken, Thermal Stability of LixCoO2, LixNiO2 and Λ-MnO2 and consequences for the safety of Li-Ion cells. Solid State Ion. 69 (1994) 265-270.
DOI: 10.1016/0167-2738(94)90415-4
Google Scholar
[14]
M.C. Daniel, D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, And Applications Toward Biology, Catalysis, And Nanotechnology, Chem. Rev. 104 (2004) 293-346.
DOI: 10.1021/cr030698+
Google Scholar
[15]
M.M. Doeff, Battery Cathodes. Batteries for Sustainability. Springer. (2013).
Google Scholar
[16]
M. Dresselhaus, I.L. Thomas, Alternative energy technologies, Nat. 414 (2001) 332-337.
Google Scholar
[17]
A. Eftekhari, Mixed-Metals Co-deposition As A Novel Method for The Preparation of LiMn2O4 Electrodes with Reduced Capacity Fades, J. Electrochem. Soc. 150 (2003) A966-A969.
DOI: 10.1149/1.1580817
Google Scholar
[18]
G. Eichinger, J.O. Besenhard, High Energy Density Lithium Cells: Part Ii. Cathodes and Complete Cells. J. Electroanal. Chem. Interfac. Electrochem. 72 (1976)1-31.
DOI: 10.1002/chin.197645014
Google Scholar
[19]
Y. Ein-Eli, R. Urian, W. Wen, S. Mukerjee, Low Temperature Performance of Copper/Nickel Modified LiMn2O4 Spinels, Electrochim. Acta. 50 (2005) 1931-1937.
DOI: 10.1016/j.electacta.2004.09.002
Google Scholar
[20]
S.H. Changa, K.S. Ryua, K.M. Kima., M.S. KimbI, K.S. Kimb, G. Kanga, Electrochemical Properties of Cobalt-Exchanged Spinel Lithium Manganese Oxide, J. Power Sources. 84 (1999) 134-137.
DOI: 10.1016/s0378-7753(99)00307-9
Google Scholar
[21]
M. Saulnier, A. Auclair, G. Liang, S.B. Schougaard, Manganese dissolution in lithium-ion positive electrode materials, Solid State Ion. 294 (2016) 1–5.
DOI: 10.1016/j.ssi.2016.06.007
Google Scholar
[22]
P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4, Solid State Ion. 148 (2002) 45–51.
DOI: 10.1016/s0167-2738(02)00134-0
Google Scholar
[23]
R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals, Solid-State Lett. 10 (2007) A13–A16.
DOI: 10.1149/1.2388240
Google Scholar
[24]
C. Delmas, M. Maccario, L. Croguennec, F.L. Cras, F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nat. Mater. 7 (2008) 665–671.
DOI: 10.1038/nmat2230
Google Scholar
[25]
R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites, J Electrochem Soc. 152 (2005)A607–A610.
DOI: 10.1149/1.1860492
Google Scholar
[26]
J.W. Fergus, Recent Developments in Cathode Materials for Lithium Ion Batteries, J. Power Sources. 195 (2010) 939-954.
DOI: 10.1016/j.jpowsour.2009.08.089
Google Scholar
[27]
R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev. 108 (2008) 845-910.
DOI: 10.1021/cr040090g
Google Scholar
[28]
J. Wang, S. Xueliang, Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ Sci. 8 (2015) 1110–1138.
DOI: 10.1039/c4ee04016c
Google Scholar
[29]
C. Hou, J. Hou, H. Zhang, Y. Ma, X. He, W. Geng, Q. Zhang, Facile Synthesis of LiMn0.75Fe0.25PO4/C, Nanocomposite Cathode Materials of Lithium-Ion Batteries through Microwave Sintering, Eng. Sci, 11 (2020)36-43.
Google Scholar
[30]
A. Paolella, G. Bertoni, S. Marras, E. Dilena, M. Colombo, M. Prato, A. Riedinger, M. Povia, A. Ansaldo, K. Zaghib, L. Manna, C. George, Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes, Nano Lett. 14 (2014) 6828–6835.
DOI: 10.1021/nl504093w
Google Scholar
[31]
A. Robin, H. Stephane, H. Darko, C. Matthieu, D. Robert, M. Christian, Nonstochiometry in LiFe0.5Mn0.5PO4: Structural and Electrochemical Properties, J. Electrochem. Soc. 160 (2013) A1446-A1450.
Google Scholar
[32]
I. Mustafa, R. Susantyoko, C. Wu, F. Ahmed, R. Hashaikeh, F. Almarzooqi, S. Almheiri, Nanoscopic and Macro-porous carbon nano-foam electrodes with improved Mass transport for Vanadium Redox flow Batteries, Sci. Reports. 9 (2019) 17655.
DOI: 10.1038/s41598-019-53491-w
Google Scholar
[33]
D. Di Lecce, J. Hassoun, Lithium Metal Battery Using LiFe0.5Mn0.5PO4 Olivine Cathode and Pyrrolidinium-Based Ionic Liquid Electrolyte, ACS Omega. 8 (2018) 8583–8588.
DOI: 10.1021/acsomega.8b01328
Google Scholar
[34]
K. Zaghib, F. Mauger, M. Gendron, C. Massot, M. Julien, Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries, Ionics, 14 (2008) 371–376.
DOI: 10.1007/s11581-008-0231-2
Google Scholar
[35]
M. Abha, K. Tyagi, P. Rai, D.S. Misra, FTIR Spectroscopy of Multiwalled Carbon Nanotubes: A Simple Approach to Study the Nitrogen Doping, J. Nanosci. 7 (2007) 1820–1823.
DOI: 10.1166/jnn.2007.723
Google Scholar
[36]
M. B. Christopher, F. Roger, Vibrational spectroscopic investigation of structurally-related LiFePO4, NaFePO4, and FePO4 compound, SSA. 65 (2006) 44-50.
DOI: 10.1016/j.saa.2005.09.025
Google Scholar
[37]
D. Guyomard, J. Tarascon, The Carbon/Li1+XMn2O system, Solid State Ion. 69 (1994) 222-237.
DOI: 10.1016/0167-2738(94)90412-x
Google Scholar
[38]
H. Manjunatha, T.V. Venkatesha, G.S. Suresh, G.S, Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode, J Solid State Electrochem. 16 (2012)1941–(1952).
DOI: 10.1007/s10008-011-1593-3
Google Scholar
[39]
G.J. Wang, Q.T. Qu, B. Wang, Y. Shi, S. Tian, Y.P. Wu, R. Holze, Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution, Electrochim. Act. 54 (2009) 1199–1203.
DOI: 10.1016/j.electacta.2008.08.047
Google Scholar
[40]
N. West, I.K. Ozoemena, O.C. Ikpo, G.L.P. Baker, E.I. Iwuoha, Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes, Electrochimica Acta. 101(2013) 86–92.
DOI: 10.1016/j.electacta.2012.11.085
Google Scholar