[1]
K. Yokoyama, D. Welchons. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces. Nanotechnology 18(2007) 105101.
DOI: 10.1088/0957-4484/18/10/105101
Google Scholar
[2]
S. Gurunathan, K.-J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom. Antiangiogenic properties of silver nanoparticles. Biomaterials 30(2009) 6341-50.
DOI: 10.1016/j.biomaterials.2009.08.008
Google Scholar
[3]
K. Kalishwaralal, E. Banumathi, S.R.K. Pandian, V. Deepak, J. Muniyandi, S.H. Eom, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B 73(2009) 51-7.
DOI: 10.1016/j.colsurfb.2009.04.025
Google Scholar
[4]
A. Nabikhan, K. Kandasamy, A. Raj, N.M. Alikunhi. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointerfaces 79(2010) 488-93.
DOI: 10.1016/j.colsurfb.2010.05.018
Google Scholar
[5]
A. Gour, N.K. Jain. Advances in green synthesis of nanoparticles. ARTIF CELL NANOMED B 47(2019) 844-51.
Google Scholar
[6]
S.M. Amini, A. Akbari. Metal nanoparticles synthesis through natural phenolic acids. IET nanobiotechnology 13(2019) 771-7.
DOI: 10.1049/iet-nbt.2018.5386
Google Scholar
[7]
P. Nisar, N. Ali, L. Rahman, M. Ali, Z.K. Shinwari. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 24(2019) 929-41.
DOI: 10.1007/s00775-019-01717-7
Google Scholar
[8]
T. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 377(2011) 212-6.
DOI: 10.1016/j.colsurfa.2010.12.047
Google Scholar
[9]
S. Soltanian, M. Sheikhbahaei, N. Mohamadi. Cytotoxicity evaluation of methanol extracts of some medicinal plants on P19 embryonal carcinoma cells. J Appl Pharm Sci 7(2017) 142-9.
DOI: 10.7324/japs.2017.70722
Google Scholar
[10]
A. Zadra, G. Robert. Dream recall frequency: Impact of prospective measures and motivational factors. Conscious Cogn 21(2012) 1695-702.
DOI: 10.1016/j.concog.2012.08.011
Google Scholar
[11]
S. Soltanian, N. Mohamadi, P. Rajaei, M. Khodami, M. Mohammadi. Phytochemical composition, and cytotoxic, antioxidant, and antibacterial activity of the essential oil and methanol extract of Semenovia suffruticosa. Avicenna J Phytomed 9(2019) 143.
Google Scholar
[12]
A. Rustaiyan, S. Masoudi, Z. Aghjani. The essential oil of Semenovia suffruticosa (Freyn et Bornm.) Manden. J Essent Oil Res 11(1999) 365-6.
DOI: 10.1080/10412905.1999.9701156
Google Scholar
[13]
S. Soltanian, M. Sheikhbahaei, M.J.N. Ziasistani, Cancer. Phytol Down-Regulates Expression of Some Cancer Stem Cell Markers and Decreases Side Population Proportion in Human Embryonic Carcinoma NCCIT Cells. (2020) 1-14.
DOI: 10.1080/01635581.2020.1795695
Google Scholar
[14]
S. Soltanian, H. Riahirad, A. Pabarja, M.R. Karimzadeh, K.J.B. Saeidi. Kaempferol and docetaxel diminish side population and down-regulate some cancer stem cell markers in breast cancer cell line MCF-7. 41(2017) 33.
DOI: 10.32604/biocell.2017.41.033
Google Scholar
[15]
S. Soltanian, H. Riahirad, A. Pabarja, E. Jafari, B.K.J.D.J.o.P.S. Khandani. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. 26(2018) 19-29.
DOI: 10.1007/s40199-018-0210-8
Google Scholar
[16]
M.A. Siddiqui, H.A. Alhadlaq, J. Ahmad, A.A. Al-Khedhairy, J. Musarrat, M. Ahamed. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 8(2013) e69534.
DOI: 10.1371/journal.pone.0069534
Google Scholar
[17]
M. Marvibaigi, N. Amini, E. Supriyanto, F.A.A. Majid, S.K. Jaganathan, S. Jamil, et al. Antioxidant activity and ROS-dependent apoptotic effect of Scurrula ferruginea (Jack) danser methanol extract in human breast cancer cell MDA-MB-231. PLoS One 11(2016) e0158942.
DOI: 10.1371/journal.pone.0158942
Google Scholar
[18]
M. Van Engeland, L.J. Nieland, F.C. Ramaekers, B. Schutte, C.P. Reutelingsperger. Annexin V‐affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry: The Journal of the International Society for Analytical Cytology 31(1998) 1-9.
DOI: 10.1002/(sici)1097-0320(19980101)31:1<1::aid-cyto1>3.0.co;2-r
Google Scholar
[19]
R. Nazari-Vanani, R.D. Vais, F. Sharifi, N. Sattarahmady, K. Karimian, M. Motazedian, et al. Investigation of anti-leishmanial efficacy of miltefosine and ketoconazole loaded on nanoniosomes. Acta Trop 185(2018) 69-76.
DOI: 10.1016/j.actatropica.2018.05.002
Google Scholar
[20]
F. Sharifi, F. Sharififar, I. Sharifi, H.Q. Alijani, M. Khatami. Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera. IET Nanobiotechnol 12(2017) 264-9.
DOI: 10.1049/iet-nbt.2017.0204
Google Scholar
[21]
K. Chang. Human cutaneous lieshmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science 209(1980) 1240-2.
DOI: 10.1126/science.7403880
Google Scholar
[22]
T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1983) 55-63.
DOI: 10.1016/0022-1759(83)90303-4
Google Scholar
[23]
M.A. Farah, M.A. Ali, S.-M. Chen, Y. Li, F.M. Al-Hemaid, F.M. Abou-Tarboush, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B 141(2016) 158-69.
DOI: 10.1016/j.colsurfb.2016.01.027
Google Scholar
[24]
A.A. Kajani, S.H. Zarkesh-Esfahani, A.-K. Bordbar, A.R. Khosropour, A. Razmjou, M. Kardi. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J Mol Liq 223(2016) 549-56.
DOI: 10.1016/j.molliq.2016.08.064
Google Scholar
[25]
G. Zhang, V. Gurtu, S.R. Kain, G. Yan. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23(1997) 525-31.
DOI: 10.2144/97233pf01
Google Scholar
[26]
D.K. Tiwari, T. Jin, J. Behari. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21(2011) 13-24.
DOI: 10.3109/15376516.2010.529184
Google Scholar
[27]
R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, S. Kannan. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47(2012) 2405-10.
DOI: 10.1016/j.procbio.2012.09.025
Google Scholar
[28]
S.J.P. Jacob, J. Finub, A. Narayanan. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B 91(2012) 212-4.
DOI: 10.1016/j.colsurfb.2011.11.001
Google Scholar
[29]
T. Suman, S.R. Rajasree, A. Kanchana, S.B. Elizabeth. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106(2013) 74-8.
DOI: 10.1016/j.colsurfb.2013.01.037
Google Scholar
[30]
F. Ghanbar, A. Mirzaie, F. Ashrafi, H. Noorbazargan, M.D. Jalali, S. Salehi, et al. Antioxidant, antibacterial and anticancer properties of phyto-synthesised Artemisia quttensis Podlech extract mediated AgNPs. IET nanobiotechnol 11(2016) 485-92.
DOI: 10.1049/iet-nbt.2016.0101
Google Scholar
[31]
M.V. Park, A.M. Neigh, J.P. Vermeulen, L.J. de la Fonteyne, H.W. Verharen, J.J. Briedé, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(2011) 9810-7.
DOI: 10.1016/j.biomaterials.2011.08.085
Google Scholar
[32]
S. Gurunathan, J. Raman, S.N.A. Malek, P.A. John, S. Vikineswary. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8(2013) 4399.
DOI: 10.2147/ijn.s51881
Google Scholar
[33]
G. Zhou, W. Wang. Synthesis of silver nanoparticles and their antiproliferation against human lung cancer cells in vitro. Orient J Chem 28(2012) 651.
DOI: 10.13005/ojc/280204
Google Scholar
[34]
M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. MubarakAli, M. Rajesh, R. Arun, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B 106(2013) 86-92.
DOI: 10.1016/j.colsurfb.2013.01.027
Google Scholar
[35]
Y.K. Mohanta, S.K. Panda, R. Jayabalan, N. Sharma, A.K. Bastia, T.K. Mohanta. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci 4(2017) 14.
DOI: 10.3389/fmolb.2017.00014
Google Scholar
[36]
E.S. Al-Sheddi, N.N. Farshori, M.M. Al-Oqail, S.M. Al-Massarani, Q. Saquib, R. Wahab, et al. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl 2018(2018) 1-12.
DOI: 10.1155/2018/9390784
Google Scholar
[37]
C. Wang, X. Hu, Y. Gao, Y. Ji. ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. BioMed research international 2015(2015).
DOI: 10.1155/2015/423287
Google Scholar
[38]
F.S. Rosarin, V. Arulmozhi, S. Nagarajan, S. Mirunalini. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 6(2013) 1-10.
DOI: 10.1016/s1995-7645(12)60193-x
Google Scholar
[39]
L.Z. Flores‐López, H. Espinoza‐Gómez, R. Somanathan. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39(2019) 16-26.
DOI: 10.1002/jat.3654
Google Scholar
[40]
J. Skalska, L. Strużyńska. Toxic effects of silver nanoparticles in mammals–does a risk of neurotoxicity exist. Folia Neuropathol 53(2015) 281-300.
DOI: 10.5114/fn.2015.56543
Google Scholar
[41]
P.P. Fu, Q. Xia, H.-M. Hwang, P.C. Ray, H. Yu. Mechanisms of nanotoxicity: generation of reactive oxygen species. Food Drug Anal 22(2014) 64-75.
DOI: 10.1016/j.jfda.2014.01.005
Google Scholar
[42]
S. Salehi, S.A.S. Shandiz, F. Ghanbar, M.R. Darvish, M.S. Ardestani, A. Mirzaie, et al. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int J Nanomedicine 11(2016) 1835.
DOI: 10.2147/ijn.s99882
Google Scholar
[43]
G. Kumar, H. Degheidy, B.J. Casey, P.L. Goering. Flow cytometry evaluation of in vitro cellular necrosis and apoptosis induced by silver nanoparticles. Food Chem Toxicol 85(2015) 45-51.
DOI: 10.1016/j.fct.2015.06.012
Google Scholar
[44]
H. Ciftci, M. TÜRK, U. TAMER, S. Karahan, Y. Menemen. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turk J Biol 37(2013) 573-81.
DOI: 10.3906/biy-1302-21
Google Scholar
[45]
M. Rai, S. Deshmukh, A. Ingle, A. Gade. Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. J Appl Microbiol 112(2012) 841-52.
DOI: 10.1111/j.1365-2672.2012.05253.x
Google Scholar
[46]
M.R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H.Z. Alkhathlan, M.R.H. Siddiqui, et al. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10(2018) 913.
DOI: 10.3390/su10040913
Google Scholar
[47]
M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124(2019) 148-54.
DOI: 10.1016/j.ijbiomac.2018.11.101
Google Scholar
[48]
P. Logeswari, S. Silambarasan, J. Abraham. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J SAUDI CHEM SOC 19(2015) 311-7.
DOI: 10.1016/j.jscs.2012.04.007
Google Scholar
[49]
X. Gao, J.J. Yourick, V.D. Topping, T. Black, N. Olejnik, Z. Keltner, et al. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion. Toxicol Rep 2(2015) 341-50.
DOI: 10.1016/j.toxrep.2014.12.008
Google Scholar
[50]
H. Umar, D. Kavaz, N. Rizaner. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International journal of nanomedicine 14(2019) 87.
DOI: 10.2147/ijn.s186888
Google Scholar
[51]
E. Zare, S. Pourseyedi, M. Khatami, E. Darezereshki. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. J Mol Struct 1146(2017) 96-103.
DOI: 10.1016/j.molstruc.2017.05.118
Google Scholar
[52]
R. Sinha, R. Karan, A. Sinha, S. Khare. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102(2011) 1516-20.
DOI: 10.1016/j.biortech.2010.07.117
Google Scholar
[53]
Q.L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(2000) 662-8.
DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
Google Scholar
[54]
I. Sondi, B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(2004) 177-82.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[55]
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16(2005) 2346.
DOI: 10.1088/0957-4484/16/10/059
Google Scholar
[56]
S.L. Croft, K. Seifert, V. Yardley. Current scenario of drug development for leishmaniasis. Indian J Med Res 123(2006) 399.
Google Scholar
[57]
A. Shokri, I. Sharifi, A. Khamesipour, N. Nakhaee, M.F. Harandi, J. Nosratabadi, et al. The effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Leishmania tropica to meglumine antimoniate. Parasitol Res 110(2012) 1113-7.
DOI: 10.1007/s00436-011-2599-6
Google Scholar
[58]
P. Cos, A.J. Vlietinck, D.V. Berghe, L. Maes. Anti-infective potential of natural products: how to develop a stronger in vitro proof-of-concept,. J Ethnopharmacol 106(2006) 290-302.
DOI: 10.1016/j.jep.2006.04.003
Google Scholar
[59]
S.L. Croft, K. Seifert, V. Yardley. Current scenario of drug development for leishmaniasis. The Indian journal of medical research 123(2006) 399-410.
Google Scholar
[60]
D. Légaré, M. Ouellette. Drug resistance in Leishmania. Handbook of Antimicrobial Resistance; Gotte, MB, Matlashewski, A, Wainberg, G, Mark, A, Donald, S, Eds (2014) 313-41.
DOI: 10.1007/978-1-4939-0694-9_17
Google Scholar
[61]
A. Ahmad, F. Syed, A. Shah, Z. Khan, K. Tahir, A.U. Khan, et al. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advances 5(2015) 73793-806.
DOI: 10.1039/c5ra13206a
Google Scholar
[62]
I. Ullah, G. Cosar, E.S. Abamor, M. Bagirova, Z.K. Shinwari, A.M. Allahverdiyev. Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech 8(2018) 98.
DOI: 10.1007/s13205-018-1121-6
Google Scholar
[63]
P. Baiocco, A. Ilari, P. Ceci, S. Orsini, M. Gramiccia, T. Di Muccio, et al. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Med Chem Lett 2(2011) 230-3.
DOI: 10.1021/ml1002629
Google Scholar
[64]
A.A. Zahir, I.S. Chauhan, A. Bagavan, C. Kamaraj, G. Elango, J. Shankar, et al. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob 59(2015) 4782-99.
DOI: 10.1128/aac.00098-15
Google Scholar
[65]
J.R. Fanti, F. Tomiotto-Pellissier, M.M. Miranda-Sapla, A.H.D. Cataneo, C.G.T. de Jesus Andrade, C. Panis, et al. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop 178(2018) 46-54.
DOI: 10.1016/j.actatropica.2017.10.027
Google Scholar