Synthesis and Biological Characterization of Silver Nanoparticles Biosynthesized by Semenovia suffruticosa

Article Preview

Abstract:

In this study, silver nanoparticles (AgNPs) were synthesized using methanol extract of Semenovia. suffruticosa. The prepared AgNPs (SS-AgNPs) were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-raydiffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM). Afterward, biological activities including cytotoxicity, ability to generate reactive oxygen species (ROS), antileishmanial and antibacterial effects were investigated. According to the UV-Vis spectroscopy, absorption peak at 430 nm indicates the synthesis of AgNPs. TEM and SEM image of AgNPs shows spherical shape with size range of 20–70 nm. FTIR analysis displayed the involvement of phytochemical constituents in synthesized nanoparticles. The X-ray diffraction analysis confirmed the synthesis of highly pure AgNPs with high crystallinity and Cubic shape with crystalline size of 21.4 nm. SS-AgNPs were cytotoxic on cell lines with IC50 values of 15, 20, 20 and 26 µg/mL in HEK 293, Caco-2, SH-SY5Y and MDA-MD-231 cells, respectively. DCFH-DA assay showed that 24 h exposure to 25, 50, 100, 200 µg/mL concentrations of SS-AgNPs significantly increased production of ROS in cells that indicate oxidative stress induction by SS-AgNPs. Annexin V-PE/7-AAD staining analysis revealed a combination of apoptosis and necrosis following the exposure of Ag NPs to cells. SS-AgNPs displayed a notable bactericidal activity against Gram-negative bacterial strains. SS-AgNPs revealed remarkable antileishmanial activity against the promastigote and amastigote stages of Leishmania. major. IC50 values of SS-AgNPs were 16.17 and 6.35 using promastigote and amastigotes assay respectively. Conclusively, phytosynthesized AgNPs is effective in antileishmanial, antimicrobial and cytotoxic activities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-60

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Yokoyama, D. Welchons. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces. Nanotechnology 18(2007) 105101.

DOI: 10.1088/0957-4484/18/10/105101

Google Scholar

[2] S. Gurunathan, K.-J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom. Antiangiogenic properties of silver nanoparticles. Biomaterials 30(2009) 6341-50.

DOI: 10.1016/j.biomaterials.2009.08.008

Google Scholar

[3] K. Kalishwaralal, E. Banumathi, S.R.K. Pandian, V. Deepak, J. Muniyandi, S.H. Eom, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B 73(2009) 51-7.

DOI: 10.1016/j.colsurfb.2009.04.025

Google Scholar

[4] A. Nabikhan, K. Kandasamy, A. Raj, N.M. Alikunhi. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointerfaces 79(2010) 488-93.

DOI: 10.1016/j.colsurfb.2010.05.018

Google Scholar

[5] A. Gour, N.K. Jain. Advances in green synthesis of nanoparticles. ARTIF CELL NANOMED B 47(2019) 844-51.

Google Scholar

[6] S.M. Amini, A. Akbari. Metal nanoparticles synthesis through natural phenolic acids. IET nanobiotechnology 13(2019) 771-7.

DOI: 10.1049/iet-nbt.2018.5386

Google Scholar

[7] P. Nisar, N. Ali, L. Rahman, M. Ali, Z.K. Shinwari. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 24(2019) 929-41.

DOI: 10.1007/s00775-019-01717-7

Google Scholar

[8] T. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 377(2011) 212-6.

DOI: 10.1016/j.colsurfa.2010.12.047

Google Scholar

[9] S. Soltanian, M. Sheikhbahaei, N. Mohamadi. Cytotoxicity evaluation of methanol extracts of some medicinal plants on P19 embryonal carcinoma cells. J Appl Pharm Sci 7(2017) 142-9.

DOI: 10.7324/japs.2017.70722

Google Scholar

[10] A. Zadra, G. Robert. Dream recall frequency: Impact of prospective measures and motivational factors. Conscious Cogn 21(2012) 1695-702.

DOI: 10.1016/j.concog.2012.08.011

Google Scholar

[11] S. Soltanian, N. Mohamadi, P. Rajaei, M. Khodami, M. Mohammadi. Phytochemical composition, and cytotoxic, antioxidant, and antibacterial activity of the essential oil and methanol extract of Semenovia suffruticosa. Avicenna J Phytomed 9(2019) 143.

Google Scholar

[12] A. Rustaiyan, S. Masoudi, Z. Aghjani. The essential oil of Semenovia suffruticosa (Freyn et Bornm.) Manden. J Essent Oil Res 11(1999) 365-6.

DOI: 10.1080/10412905.1999.9701156

Google Scholar

[13] S. Soltanian, M. Sheikhbahaei, M.J.N. Ziasistani, Cancer. Phytol Down-Regulates Expression of Some Cancer Stem Cell Markers and Decreases Side Population Proportion in Human Embryonic Carcinoma NCCIT Cells. (2020) 1-14.

DOI: 10.1080/01635581.2020.1795695

Google Scholar

[14] S. Soltanian, H. Riahirad, A. Pabarja, M.R. Karimzadeh, K.J.B. Saeidi. Kaempferol and docetaxel diminish side population and down-regulate some cancer stem cell markers in breast cancer cell line MCF-7. 41(2017) 33.

DOI: 10.32604/biocell.2017.41.033

Google Scholar

[15] S. Soltanian, H. Riahirad, A. Pabarja, E. Jafari, B.K.J.D.J.o.P.S. Khandani. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. 26(2018) 19-29.

DOI: 10.1007/s40199-018-0210-8

Google Scholar

[16] M.A. Siddiqui, H.A. Alhadlaq, J. Ahmad, A.A. Al-Khedhairy, J. Musarrat, M. Ahamed. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 8(2013) e69534.

DOI: 10.1371/journal.pone.0069534

Google Scholar

[17] M. Marvibaigi, N. Amini, E. Supriyanto, F.A.A. Majid, S.K. Jaganathan, S. Jamil, et al. Antioxidant activity and ROS-dependent apoptotic effect of Scurrula ferruginea (Jack) danser methanol extract in human breast cancer cell MDA-MB-231. PLoS One 11(2016) e0158942.

DOI: 10.1371/journal.pone.0158942

Google Scholar

[18] M. Van Engeland, L.J. Nieland, F.C. Ramaekers, B. Schutte, C.P. Reutelingsperger. Annexin V‐affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry: The Journal of the International Society for Analytical Cytology 31(1998) 1-9.

DOI: 10.1002/(sici)1097-0320(19980101)31:1<1::aid-cyto1>3.0.co;2-r

Google Scholar

[19] R. Nazari-Vanani, R.D. Vais, F. Sharifi, N. Sattarahmady, K. Karimian, M. Motazedian, et al. Investigation of anti-leishmanial efficacy of miltefosine and ketoconazole loaded on nanoniosomes. Acta Trop 185(2018) 69-76.

DOI: 10.1016/j.actatropica.2018.05.002

Google Scholar

[20] F. Sharifi, F. Sharififar, I. Sharifi, H.Q. Alijani, M. Khatami. Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera. IET Nanobiotechnol 12(2017) 264-9.

DOI: 10.1049/iet-nbt.2017.0204

Google Scholar

[21] K. Chang. Human cutaneous lieshmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science 209(1980) 1240-2.

DOI: 10.1126/science.7403880

Google Scholar

[22] T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1983) 55-63.

DOI: 10.1016/0022-1759(83)90303-4

Google Scholar

[23] M.A. Farah, M.A. Ali, S.-M. Chen, Y. Li, F.M. Al-Hemaid, F.M. Abou-Tarboush, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf B 141(2016) 158-69.

DOI: 10.1016/j.colsurfb.2016.01.027

Google Scholar

[24] A.A. Kajani, S.H. Zarkesh-Esfahani, A.-K. Bordbar, A.R. Khosropour, A. Razmjou, M. Kardi. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J Mol Liq 223(2016) 549-56.

DOI: 10.1016/j.molliq.2016.08.064

Google Scholar

[25] G. Zhang, V. Gurtu, S.R. Kain, G. Yan. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23(1997) 525-31.

DOI: 10.2144/97233pf01

Google Scholar

[26] D.K. Tiwari, T. Jin, J. Behari. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21(2011) 13-24.

DOI: 10.3109/15376516.2010.529184

Google Scholar

[27] R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, S. Kannan. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47(2012) 2405-10.

DOI: 10.1016/j.procbio.2012.09.025

Google Scholar

[28] S.J.P. Jacob, J. Finub, A. Narayanan. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B 91(2012) 212-4.

DOI: 10.1016/j.colsurfb.2011.11.001

Google Scholar

[29] T. Suman, S.R. Rajasree, A. Kanchana, S.B. Elizabeth. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106(2013) 74-8.

DOI: 10.1016/j.colsurfb.2013.01.037

Google Scholar

[30] F. Ghanbar, A. Mirzaie, F. Ashrafi, H. Noorbazargan, M.D. Jalali, S. Salehi, et al. Antioxidant, antibacterial and anticancer properties of phyto-synthesised Artemisia quttensis Podlech extract mediated AgNPs. IET nanobiotechnol 11(2016) 485-92.

DOI: 10.1049/iet-nbt.2016.0101

Google Scholar

[31] M.V. Park, A.M. Neigh, J.P. Vermeulen, L.J. de la Fonteyne, H.W. Verharen, J.J. Briedé, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(2011) 9810-7.

DOI: 10.1016/j.biomaterials.2011.08.085

Google Scholar

[32] S. Gurunathan, J. Raman, S.N.A. Malek, P.A. John, S. Vikineswary. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8(2013) 4399.

DOI: 10.2147/ijn.s51881

Google Scholar

[33] G. Zhou, W. Wang. Synthesis of silver nanoparticles and their antiproliferation against human lung cancer cells in vitro. Orient J Chem 28(2012) 651.

DOI: 10.13005/ojc/280204

Google Scholar

[34] M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. MubarakAli, M. Rajesh, R. Arun, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B 106(2013) 86-92.

DOI: 10.1016/j.colsurfb.2013.01.027

Google Scholar

[35] Y.K. Mohanta, S.K. Panda, R. Jayabalan, N. Sharma, A.K. Bastia, T.K. Mohanta. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci 4(2017) 14.

DOI: 10.3389/fmolb.2017.00014

Google Scholar

[36] E.S. Al-Sheddi, N.N. Farshori, M.M. Al-Oqail, S.M. Al-Massarani, Q. Saquib, R. Wahab, et al. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl 2018(2018) 1-12.

DOI: 10.1155/2018/9390784

Google Scholar

[37] C. Wang, X. Hu, Y. Gao, Y. Ji. ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. BioMed research international 2015(2015).

DOI: 10.1155/2015/423287

Google Scholar

[38] F.S. Rosarin, V. Arulmozhi, S. Nagarajan, S. Mirunalini. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 6(2013) 1-10.

DOI: 10.1016/s1995-7645(12)60193-x

Google Scholar

[39] L.Z. Flores‐López, H. Espinoza‐Gómez, R. Somanathan. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39(2019) 16-26.

DOI: 10.1002/jat.3654

Google Scholar

[40] J. Skalska, L. Strużyńska. Toxic effects of silver nanoparticles in mammals–does a risk of neurotoxicity exist. Folia Neuropathol 53(2015) 281-300.

DOI: 10.5114/fn.2015.56543

Google Scholar

[41] P.P. Fu, Q. Xia, H.-M. Hwang, P.C. Ray, H. Yu. Mechanisms of nanotoxicity: generation of reactive oxygen species. Food Drug Anal 22(2014) 64-75.

DOI: 10.1016/j.jfda.2014.01.005

Google Scholar

[42] S. Salehi, S.A.S. Shandiz, F. Ghanbar, M.R. Darvish, M.S. Ardestani, A. Mirzaie, et al. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int J Nanomedicine 11(2016) 1835.

DOI: 10.2147/ijn.s99882

Google Scholar

[43] G. Kumar, H. Degheidy, B.J. Casey, P.L. Goering. Flow cytometry evaluation of in vitro cellular necrosis and apoptosis induced by silver nanoparticles. Food Chem Toxicol 85(2015) 45-51.

DOI: 10.1016/j.fct.2015.06.012

Google Scholar

[44] H. Ciftci, M. TÜRK, U. TAMER, S. Karahan, Y. Menemen. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turk J Biol 37(2013) 573-81.

DOI: 10.3906/biy-1302-21

Google Scholar

[45] M. Rai, S. Deshmukh, A. Ingle, A. Gade. Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. J Appl Microbiol 112(2012) 841-52.

DOI: 10.1111/j.1365-2672.2012.05253.x

Google Scholar

[46] M.R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H.Z. Alkhathlan, M.R.H. Siddiqui, et al. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10(2018) 913.

DOI: 10.3390/su10040913

Google Scholar

[47] M. Behravan, A.H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124(2019) 148-54.

DOI: 10.1016/j.ijbiomac.2018.11.101

Google Scholar

[48] P. Logeswari, S. Silambarasan, J. Abraham. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J SAUDI CHEM SOC 19(2015) 311-7.

DOI: 10.1016/j.jscs.2012.04.007

Google Scholar

[49] X. Gao, J.J. Yourick, V.D. Topping, T. Black, N. Olejnik, Z. Keltner, et al. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion. Toxicol Rep 2(2015) 341-50.

DOI: 10.1016/j.toxrep.2014.12.008

Google Scholar

[50] H. Umar, D. Kavaz, N. Rizaner. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International journal of nanomedicine 14(2019) 87.

DOI: 10.2147/ijn.s186888

Google Scholar

[51] E. Zare, S. Pourseyedi, M. Khatami, E. Darezereshki. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. J Mol Struct 1146(2017) 96-103.

DOI: 10.1016/j.molstruc.2017.05.118

Google Scholar

[52] R. Sinha, R. Karan, A. Sinha, S. Khare. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102(2011) 1516-20.

DOI: 10.1016/j.biortech.2010.07.117

Google Scholar

[53] Q.L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(2000) 662-8.

DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

Google Scholar

[54] I. Sondi, B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(2004) 177-82.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[55] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16(2005) 2346.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[56] S.L. Croft, K. Seifert, V. Yardley. Current scenario of drug development for leishmaniasis. Indian J Med Res 123(2006) 399.

Google Scholar

[57] A. Shokri, I. Sharifi, A. Khamesipour, N. Nakhaee, M.F. Harandi, J. Nosratabadi, et al. The effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Leishmania tropica to meglumine antimoniate. Parasitol Res 110(2012) 1113-7.

DOI: 10.1007/s00436-011-2599-6

Google Scholar

[58] P. Cos, A.J. Vlietinck, D.V. Berghe, L. Maes. Anti-infective potential of natural products: how to develop a stronger in vitro proof-of-concept,. J Ethnopharmacol 106(2006) 290-302.

DOI: 10.1016/j.jep.2006.04.003

Google Scholar

[59] S.L. Croft, K. Seifert, V. Yardley. Current scenario of drug development for leishmaniasis. The Indian journal of medical research 123(2006) 399-410.

Google Scholar

[60] D. Légaré, M. Ouellette. Drug resistance in Leishmania. Handbook of Antimicrobial Resistance; Gotte, MB, Matlashewski, A, Wainberg, G, Mark, A, Donald, S, Eds (2014) 313-41.

DOI: 10.1007/978-1-4939-0694-9_17

Google Scholar

[61] A. Ahmad, F. Syed, A. Shah, Z. Khan, K. Tahir, A.U. Khan, et al. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advances 5(2015) 73793-806.

DOI: 10.1039/c5ra13206a

Google Scholar

[62] I. Ullah, G. Cosar, E.S. Abamor, M. Bagirova, Z.K. Shinwari, A.M. Allahverdiyev. Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech 8(2018) 98.

DOI: 10.1007/s13205-018-1121-6

Google Scholar

[63] P. Baiocco, A. Ilari, P. Ceci, S. Orsini, M. Gramiccia, T. Di Muccio, et al. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Med Chem Lett 2(2011) 230-3.

DOI: 10.1021/ml1002629

Google Scholar

[64] A.A. Zahir, I.S. Chauhan, A. Bagavan, C. Kamaraj, G. Elango, J. Shankar, et al. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob 59(2015) 4782-99.

DOI: 10.1128/aac.00098-15

Google Scholar

[65] J.R. Fanti, F. Tomiotto-Pellissier, M.M. Miranda-Sapla, A.H.D. Cataneo, C.G.T. de Jesus Andrade, C. Panis, et al. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop 178(2018) 46-54.

DOI: 10.1016/j.actatropica.2017.10.027

Google Scholar