Synthesis and Electrochemical Properties of α and β Modifications of MnO2 for Supercapacitors Application

Article Preview

Abstract:

In this study, the α and β modifications of MnO2 have been successfully synthesized by the hydrothermal method. The obtained materials have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption. In addition, the supercapacitor performance of the materials has been pre-tested to assess their suitability for practical applications. The average particle size of the α modification is 12-15 nm, and the β modification is 14-18 nm. The surface areas of the α and β modifications of MnO2 are 200 m2/g and 70 m2/g, respectively. The average pore sizes are 3.2 nm and 5.3 nm, respectively. The specific capacitance of 40 F/g is observed at 1 mV/s, which has been recorded using cyclic voltammetry and constant current charge-discharge cycling in 30 % aqueous KOH solutions. It has been determined that the specific capacitance of the β - MnO2/electrolyte system decreases from 40 F/g to 15 F/g with an increase in the scan rate from 1 to 30 mV/s. In addition, the total capacitance of the material was divided into the electric double layer capacitance and the diffusion-controlled redox capacitance due to the Faraday reverse redox reactions. Finally, the pseudocapacitance contribution has been determined to be 90 % of the total specific capacitance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-119

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, N.Y. Kluwer Academic / Plenum Publishers, (1999) 698.

Google Scholar

[2] J. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651.

Google Scholar

[3] Li Li Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520.

Google Scholar

[4] B.K. Ostafiychuk, R.P. Lisovskiy, A.A. Saedi, B.I. Rachiy, V.O. Kotsyubynsky, P.I. Kolkovskyi, R.I. Merena, A.B. Hrubiak, Effect of orthophosphoric acid on morphology of nanoporous carbon materials, J. Nano- Electron. Phys. 11 No 3 (2019) 03036.

Google Scholar

[5] B. Conway and W. Pell, Peculiarities and advantages of hybrid capacitor devices on combination of capacitor and battery type electrodes Proceedings of the 12th International Seminar on DLC and Similar Energy Storage Devices, Deerfield Beach. Florida (USA), (2002).

DOI: 10.1016/j.jpowsour.2004.03.021

Google Scholar

[6] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406.

DOI: 10.1021/jp7108785

Google Scholar

[7] P.I. Kolkovskyi, B.I. Rachiy, M. I. Kolkovskyi, B. K. Ostafiychuk, I.P. Yaremiy, V.O. Kotsyubynsky, & R.V. Ilnitsky, Synthesis and electrochemical properties of mesoporous α-MnO2 for supercapacitor applications, Journal of nano- and electronic physics 12(3) (2020) 03030-03034.

DOI: 10.15330/pcss.21.2.219-226

Google Scholar

[8] I. Yaremiy, S. Yaremiy, V. Fedoriv, O. Vlasii, & A. Lucas, Developing and programming the algorithm of refinement of the crystal structure of materials with possible isomorphous substitution, Eastern-European Journal of Enterprise Technologies 5 (5) (2018) 61-67.

DOI: 10.15587/1729-4061.2018.142752

Google Scholar

[9] V.S. Bushkova, I. P. Yaremiy, V.I. Kravets, & S. I. Mudry, X-ray analysis of nickel-cobalt ferrite nanoparticles by using Debye-Scherrer, Williamson-Hall and Ssp methods, Journal of Physical Studies 20(1-2) (2016) 1702-1-1702-7.

DOI: 10.30970/jps.20.1702

Google Scholar

[10] L. Kienle, H. J. Deiseroth, SnAl6Te10, SnGa6Te10 and PbGa6Te10: superstructures, symmetry relations and structural chemistry of filled β-manganese phases, Z. Kristallogr., 213 (11) (1998) 569– 574.

DOI: 10.1524/zkri.1998.213.11.569

Google Scholar

[11] O. Cherniushok, R. Cardoso-Gil, T. Parashchuk, Y. Grin, K. T. Wojciechowski, Phase equilibria and thermoelectric properties in the Pb–Ga–Te system in the vicinity of the PbGa6Te10 phase, Inorg. Chem. 60 (4) (2021) 2771–2782.

DOI: 10.1021/acs.inorgchem.0c03549

Google Scholar

[12] S. Geller, Crystal structure of the solid electrolyte, RbAg4I5, Science 157(3786) (1967), 310-312.

Google Scholar

[13] K.S. W. Sing, International union of pure commission on colloid and surface chemistry including catalysis reporting physisorption data for gas / solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57(4) (1985) 603-619.

DOI: 10.1351/pac198557040603

Google Scholar

[14] I.V. Horichok, L.I. Nykyruy, T.O. Parashchuk, S.D. Bardashevska and M.P. Pylyponuk, Thermodynamics of defect subsystem in zinc telluride crystals, Modern Physics Letter B 30(16) (2016).

DOI: 10.1142/s0217984916501724

Google Scholar

[15] R. Ahiska, D. Freik, T. Parashchuk, I. Gorichok, Quantum chemical calculations of the polymorphic phase transition temperatures of ZnS, ZnSe, and ZnTe crystals, Turkish Journal of Physics 38(1) (2014) 125-129.

DOI: 10.3906/fiz-1301-7

Google Scholar

[16] D. Freik, T. Parashchuk, B. Volochanska, Thermodynamic parameters of CdTe crystals in the cubic phase, Journal of Crystal Growth 402 (2014) 90-93.

DOI: 10.1016/j.jcrysgro.2014.05.005

Google Scholar

[17] P. I. Kolkovskyi, B. K. Ostafiychuk, M. I. Kolkovskyi, N. Y. Ivanichok, S. S. Sklepova, & B. I. Rachiy, Mechanisms of charge accumulation in electrochemical systems formed based on of nanoporous carbon and manganese oxide, Physics and Chemistry of Solid State 21(4) (2020) 621-627.

DOI: 10.15330/pcss.21.4.621-627

Google Scholar

[18] B. K. Ostafiychuk, H. M. Kolkovska, I. P. Yaremiy, B. I. Rachiy, P. I. Kolkovskyi, N. Y. Ivanichok, & S. I. Yaremiy, Synthesis and electrochemical properties of LaMnO3 perovskite nanoparticles, Physics and Chemistry of Solid State 21(2) (2020) 219-226.

DOI: 10.15330/pcss.21.2.219-226

Google Scholar