High-Performance α-Bi2O3/CdS Heterojunction Photocatalyst: Innovative Design, Electrochemical Performance and DFT Calculation

Article Preview

Abstract:

Heterojunction semiconductor photocatalysis is an auspicious technique for clear up organic pollutants from water, and have been of valuable strategy in the area of photocatalysis. Herein, electrophoretic deposition procedure was used to prepare α-Bi2O3/CdS type-Ⅱ heterojunction photocatalysts. The results of PL, Raman, and EIS show that there is a heterojunction effect in α-Bi2O3/CdS, which is propitious to improve the separation efficiency of photogenerated electron-hole pairs. The DFT calculation reveals that the work function of CdS (4.57 eV) is higher than that of α-Bi2O3 (3.37 eV), which facilitates the migrating of e- from the CB of α-Bi2O3 to the CB of CdS, and the migrating of h+ from the VB of CdS to the VB of α-Bi2O3, thus the e--h+ pairs with high redox ability are retained. The performances were assessed by degrading methyl orange (MO), acid magenta under simulated visible light irradiation. Under simulated visible light irradiation, BC45 composite exhibited the highest degradation efficiency of 87% (MO) and 81% (acid fuchsin) for 4 h, which was about 2 times higher than that of CdS (MO) and (acid fuchsin). It is believed that the dual characteristics of H2O wettability and dye adsorption performance in α-Bi2O3/CdS composites promote photocatalytic process compared with single CdS and α-Bi2O3. The study could provide new insights to develop efficiently capable photocatalysts of the α-Bi2O3/CdS composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-28

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev. 117 (2017) 11302-11336.

DOI: 10.1021/acs.chemrev.7b00161

Google Scholar

[2] P. Yang, R. Wang, H. Zhuzhang, M.-M. Titirici, X. Wang, Photochemical construction of nitrogen-containing nanocarbons for carbon dioxide photoreduction, ACS Catal. 10 (2020) 12706-12715.

DOI: 10.1021/acscatal.0c03607

Google Scholar

[3] A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[4] Z. Ai, K. Zhang, D. Shi, B. Chang, Y. Shao, L. Zhang, Y. Wu, X. Hao, Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting, Nano Energy. 69 (2020) 104408.

DOI: 10.1016/j.nanoen.2019.104408

Google Scholar

[5] L. Shan, Y. Liu, Er3+, Yb3+ doping induced core–shell structured BiVO4 and near-infrared photocatalytic properties, J. Mol. Catal A-Chem. 416 (2016) 1-9.

DOI: 10.1016/j.molcata.2016.02.013

Google Scholar

[6] A. Ye, W. Fan, Q. Zhang, W. Deng, Y. Wang, CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation, Catal. Sci. Technol. 2 (2012) 969–978.

DOI: 10.1039/c2cy20027a

Google Scholar

[7] S.K. Apte, S.N. Garaje, S.S. Arbuj, B.B. Kale, J.O. Baeg, U.P. Mulik, S.D. Naik, D.P. Amalnerkar, S.W. Gosavi, A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation, J. Mater. Chem. 21 (2011) 19241.

DOI: 10.1039/c1jm14067a

Google Scholar

[8] J.N. Heo, J. Shin, J.Y. Do, R. Kim, M. Kang, Reliable carbon dioxide photoreduction by a rational electron transfer cycle formed on a nanorod-shaped CdS/Fe2O3 heterojunction catalyst, Appl. Surf. Sci. 495 (2019) 143567.

DOI: 10.1016/j.apsusc.2019.143567

Google Scholar

[9] N. Bao, L. Shen, T. Takata, K. Domen, Self-Templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light, Chem. Mater. 20 (2008) 110-117.

DOI: 10.1021/cm7029344

Google Scholar

[10] L. Zou, H. Wang, X. Wang, High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-Scheme process, ACS Sustain. Chem. Eng. 5 (2016) 303-309.

DOI: 10.1021/acssuschemeng.6b01628

Google Scholar

[11] Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/Graphene nanocomposite photocatalysts, Adv. Energy Mater. 5 (2015) 1500010.

DOI: 10.1002/aenm.201500010

Google Scholar

[12] A.N. Kolodin, A.I. Bulavchenko, Contact angle and free surface energy of CdS films on polystyrene substrate, Appl. Surf. Sci. 463 (2019) 820-828.

DOI: 10.1016/j.apsusc.2018.08.176

Google Scholar

[13] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc. 133 (2011) 10878-10884.

DOI: 10.1021/ja2025454

Google Scholar

[14] L. Zou, H. Wang, G. Yuan, X. Wang, Magnetically separable CdS/ZnFe2O4 composites with highly efficient photocatalytic activity and photostability under visible light, ACS Appl. Nano Mater. 1 (2018) 831-838.

DOI: 10.1021/acsanm.7b00243

Google Scholar

[15] L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts, Energy Environ. Sci. 11 (2018) 1362-1391.

DOI: 10.1039/c7ee03640j

Google Scholar

[16] A.P. Singh, S. Kumar, M. Thirumal, Efficient charge transfer in heterostructures of CdS/NaTaO3 with improved visible-light-driven photocatalytic activity, ACS Omega. 4 (2019) 12175-12185.

DOI: 10.1021/acsomega.9b01133

Google Scholar

[17] Y. Chen, G. Tian, W. Zhou, Y. Xiao, J. Wang, X. Zhang, H. Fu, Enhanced photogenerated carrier separation in CdS quantum dot sensitized ZnFe2O4/ZnIn2S4 nanosheet stereoscopic films for exceptional visible light photocatalytic H2 evolution performance, Nanoscale. 9 (2017) 5912-5921.

DOI: 10.1039/c7nr00155j

Google Scholar

[18] Y. Lu, Y. Li, Y.Y. Wang, J.Y. Zhang, Two-photon induced NIR active core-shell structured WO3/CdS for enhanced solar light photocatalytic performance, Appl. Catal. B: Environ. 272 (2020) 118979.

DOI: 10.1016/j.apcatb.2020.118979

Google Scholar

[19] L. Zhang, X. Fu, S. Meng, X. Jiang, J. Wang, S. Chen, Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light, J. Mater. Chem. A. 3 (2015) 23732-23742.

DOI: 10.1039/c5ta07459b

Google Scholar

[20] A. Dumbrava, G. Prodan, D. Berger, M. Bica, Properties of pEG-capped CdS nanopowders synthesized under very mild conditions, Powder Technol. 270 (2015) 197-204.

DOI: 10.1016/j.powtec.2014.10.012

Google Scholar

[21] J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, In situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst, Adv. Mater. 31 (2019) 1802981.

DOI: 10.1002/adma.201802981

Google Scholar

[22] S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity, Appl. Catal. B: Environ. 243 (2019) 19-26.

DOI: 10.1016/j.apcatb.2018.10.019

Google Scholar

[23] C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties, Appl. Catal. B: Environ. 138-139 (2013) 175-183.

DOI: 10.1016/j.apcatb.2013.02.042

Google Scholar

[24] S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C. 116 (2012) 26306-26312.

DOI: 10.1021/jp306874z

Google Scholar

[25] W. Guo, Z. Chen, C. Yang, T. Neumann, C. Kübel, W. Wenzel, A. Welle, W. Pfleging, O. Shekhah, C. Wöll, E. Redel, Bi2O3 nanoparticles encapsulated in surface mounted metal–organic framework thin films, Nanoscale. 8 (2016) 6468-6472.

DOI: 10.1039/c6nr00532b

Google Scholar

[26] Q. Hao, R. Wang, H. Lu, C.a. Xie, W. Ao, D. Chen, C. Ma, W. Yao, Y. Zhu, One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity, Appl. Catal. B: Environ. 219 (2017) 63-72.

DOI: 10.1016/j.apcatb.2017.07.030

Google Scholar

[27] L. Shan, G. Wang, D. Li, X. San, L. Liu, L. Dong, Z. Wu, Band alignment and enhanced photocatalytic activation of α/β-Bi2O3 heterojunctions via in situ phase transformation, Dalton Trans. 44 (2015) 7835-7843.

DOI: 10.1039/c5dt00621j

Google Scholar

[28] J. Zhang, Z. Zhu, X. Feng, Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution, Chem-Eur. J. 20 (2014) 10632-10635.

DOI: 10.1002/chem.201402522

Google Scholar

[29] Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang, Y. Yin, G.I.N. Waterhouse, X. Wang, P. Li, Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst, Nano-Micro. Lett. 12 (2020) 18.

DOI: 10.1007/s40820-019-0354-1

Google Scholar

[30] S. Obregón, G. Amor, A. Vázquez, Electrophoretic deposition of photocatalytic materials, Adv. Colloid Interface Sci. 269 (2019) 236-255.

DOI: 10.1016/j.cis.2019.05.003

Google Scholar

[31] R.C. Pawar, C.S. Lee, Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr(VI), Mater. Chem. Phys. 141 (2013) 686-693.

DOI: 10.1016/j.matchemphys.2013.05.062

Google Scholar

[32] S. Obregon, G. Amor, A. Vazquez, Electrophoretic deposition of photocatalytic materials, Adv. Colloid Interface. Sci. 269 (2019) 236-255.

Google Scholar

[33] R. Chauhan, A. Kumar, R.P. Chaudhary, Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles, Appl. Surf. Sci. 270 (2013) 655-660.

DOI: 10.1016/j.apsusc.2013.01.110

Google Scholar

[34] S. Su, Q. Han, Z. Shen, X. Wang, J. Zhu, Partial decomposition of NaBiO3 to δ-Bi2O3/NaBiO3 and α-Bi2O3/NaBiO3 heterojunctions in aqueous HAc solution respectively with good adsorption ability and photocatalytic performance, Mater. Chem. Phys. 229 (2019) 6-14.

DOI: 10.1016/j.matchemphys.2019.02.068

Google Scholar

[35] X. Chen, X. Chen, E. Yu, S. Cai, H. Jia, J. Chen, P. Liang, In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion, Chem. Eng. J. 344 (2018) 469-479.

DOI: 10.1016/j.cej.2018.03.091

Google Scholar

[36] Y. Su, L. Zhang, W. Wang, Internal polar field enhanced H2 evolution of BiOIO3 nanoplates, Int. J. Hydrogen Energy 41 (2016) 10170-10177.

DOI: 10.1016/j.ijhydene.2016.04.236

Google Scholar

[37] L. Shan, C. Lu, L. Dong, J. Suriyaprakash, Efficient facet regulation of BiVO4 and its photocatalytic motivation, J. Alloy Compd. 804 (2019) 385-391.

DOI: 10.1016/j.jallcom.2019.07.051

Google Scholar

[38] J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, B. Kim, Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized raman single nanowire microscopy, Chem-Eur. J. 17 (2011) 1304-1309.

DOI: 10.1002/chem.201001684

Google Scholar

[39] D. Majhi, P.K. Samal, K. Das, S.K. Gouda, Y.P. Bhoi, B.G. Mishra, α-NiS/Bi2O3 nanocomposites for enhanced photocatalytic degradation of tramadol, ACS Appl. Nano Mater. 2 (2019) 395-407.

DOI: 10.1021/acsanm.8b01974

Google Scholar

[40] Y. Xie, C. Zhang, D. Wang, J. Lu, Y. Wang, J. Wang, L. Zhang, R. Zhang, Catalytic performance of a Bi2O3–Fe2O3 system in soot combustion, New J. Chem. 43 (2019) 15368-15374.

DOI: 10.1039/c9nj03419f

Google Scholar

[41] H. Lin, L. Ding, Z. Pei, Y. Zhou, J. Long, W. Deng, X. Wang, Au deposited BiOCl with different facets: on determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity, Appl. Catal. B: Environ. 160 (2014) 98-105.

DOI: 10.1016/j.apcatb.2014.05.018

Google Scholar

[42] J. Zhang, Y. Zhang, Y. Lei, C. Pan, Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study, Catal Sci Technol. 1 (2011) 273–278.

DOI: 10.1039/c0cy00051e

Google Scholar

[43] L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Appl. Catal. A-Gen. 308 (2006) 105-110.

DOI: 10.1016/j.apcata.2006.04.016

Google Scholar

[44] Y. Yan, Z. Zhou, Y. Cheng, L. Qiu, C. Gao, J. Zhou, Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification, J. Alloy Compd. 605 (2014) 102-108.

DOI: 10.1016/j.jallcom.2014.03.111

Google Scholar

[45] G.N. Vayssilov, M. Mihaylov, P.S. Petkov, K.I. Hadjiivanov, K.M. Neyman, Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and Infrared spectroscopy Investigation, J. Phys Chem. C. 115 (2011) 23435-23454.

DOI: 10.1021/jp208050a

Google Scholar

[46] C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, Z. Kang, Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting, Appl. Catal. B: Environ. 216 (2017) 114-121.

DOI: 10.1016/j.apcatb.2017.05.049

Google Scholar

[47] C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers, J. Colloid Interface Sci. 333 (2009) 242-248.

DOI: 10.1016/j.jcis.2008.12.077

Google Scholar

[48] C. Zhang, B. Liu, X. Cheng, Z. Guo, T. Zhuang, Z. Lv, A CdS@NiS reinforced concrete structure derived from nickel foam for efficient visible-light H2 production, Chem. Eng. J. 393 (2020) 124774.

DOI: 10.1016/j.cej.2020.124774

Google Scholar

[49] J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol, Sci. Adv. 3 (2017) e1701290.

DOI: 10.1126/sciadv.1701290

Google Scholar

[50] W. Ren, C. Wan, Z. Li, X. Liu, R. Zhang, X. Yang, D.J. Lee, Functional CdS nanocomposites recovered from biomineralization treatment of sulfate wastewater and its applications in the perspective of photocatalysis and electrochemistry, Sci. Total. Environ. 742 (2020) 140646.

DOI: 10.1016/j.scitotenv.2020.140646

Google Scholar

[51] A. Charanpahari, S.S. Umare, R. Sasikala, Enhanced photodegradation of dyes on Bi2O3 microflakes: Effect of GeO2 addition on photocatalytic activity, Sep. Purif. Technol. 133 (2014) 438-442.

DOI: 10.1016/j.seppur.2014.05.035

Google Scholar

[52] R. Gao, J. Wang, Z.-F. Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J.-J. Zou, Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading, Nat. Energy. 6 (2021) 614-623.

DOI: 10.1038/s41560-021-00826-5

Google Scholar

[53] Z. Wang, R. Qi, D. Liu, X. Zhao, L. Huang, S. Chen, Z. Chen, M. Li, B. You, Y. Pang, B. Yu Xia, Exfoliated ultrathin ZnIn2S4 nanosheets with abundant Zinc vacancies for enhanced CO2 electroreduction to formate, ChemSusChem. 14 (2021) 852-859.

DOI: 10.1002/cssc.202002785

Google Scholar

[54] L. Shan, J. Li, Z. Wu, L. Dong, H. Chen, D. Li, J. Suriyaprakash, X. Zhang, Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction, Chem. Eng. J. (2021) doi: https://doi.org/10.1016/j.cej.2021.131516.

DOI: 10.1016/j.cej.2021.131516

Google Scholar

[55] X. Deng, Q. Zhang, E. Zhou, C. Ji, J. Huang, M. Shao, M. Ding, X. Xu, Morphology transformation of Cu2O sub-microstructures by Sn doping for enhanced photocatalytic properties, J. Alloy Compd. 649 (2015) 1124-1129.

DOI: 10.1016/j.jallcom.2015.07.124

Google Scholar

[56] L. Shan, Y. Liu, J. Bi, J. Suriyaprakash, Z. Han, Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI, J. Alloy Compd. 721 (2017) 784-794.

DOI: 10.1016/j.jallcom.2017.06.041

Google Scholar

[57] G. Yang, B. Yang, T. Xiao, Z. Yan, One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity, Appl. Surf. Sci. 283 (2013) 402-410.

DOI: 10.1016/j.apsusc.2013.06.122

Google Scholar

[58] R. Wang, D. Xu, J. Liu, K. Li, H. Wang, Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light, Chem. Eng. J. 168 (2011) 455-460.

DOI: 10.1016/j.cej.2011.01.035

Google Scholar

[59] L. An, G. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Cheng, Synthesis of CdS/ZnO nanocomposite and its enhanced photocatalytic activity in degradation of methyl orange, Russ. J. Phys. Chem. A. 89 (2015) 1878-1883.

DOI: 10.1134/s0036024415100180

Google Scholar

[60] X. Liu, H. Deng, W. Yao, Q. Jiang, J. Shen, Preparation and photocatalytic activity of Y-doped Bi2O3, J. Alloy Compd. 651 (2015) 135-142.

Google Scholar

[61] S. Yang, C. Chen, L. Liu, L. Zhu, X. Xu, Facile fabrication of micro-floriated AgBr/Bi2O3 as highly efficient visible-light photocatalyst, Mater. Res. Bull. 92 (2017) 29-38.

DOI: 10.1016/j.materresbull.2017.03.055

Google Scholar

[62] Y. Liu, Y. Zhou, X. Zhou, X. Jin, B. Li, J. Liu, G. Chen, Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution, Chem. Eng. J. 407 (2021) 127180.

DOI: 10.1016/j.cej.2020.127180

Google Scholar

[63] A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, Facile synthesis of a Z-Scheme ZnIn2S4/MoO3 heterojunction with enhanced photocatalytic activity under visible light irradiation, ACS Omega. 5 (2020) 8188-8199.

DOI: 10.1021/acsomega.0c00446

Google Scholar