[1]
Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev. 117 (2017) 11302-11336.
DOI: 10.1021/acs.chemrev.7b00161
Google Scholar
[2]
P. Yang, R. Wang, H. Zhuzhang, M.-M. Titirici, X. Wang, Photochemical construction of nitrogen-containing nanocarbons for carbon dioxide photoreduction, ACS Catal. 10 (2020) 12706-12715.
DOI: 10.1021/acscatal.0c03607
Google Scholar
[3]
A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515-582.
DOI: 10.1016/j.surfrep.2008.10.001
Google Scholar
[4]
Z. Ai, K. Zhang, D. Shi, B. Chang, Y. Shao, L. Zhang, Y. Wu, X. Hao, Band-matching transformation between CdS and BCNNTs with tunable p-n homojunction for enhanced photocatalytic pure water splitting, Nano Energy. 69 (2020) 104408.
DOI: 10.1016/j.nanoen.2019.104408
Google Scholar
[5]
L. Shan, Y. Liu, Er3+, Yb3+ doping induced core–shell structured BiVO4 and near-infrared photocatalytic properties, J. Mol. Catal A-Chem. 416 (2016) 1-9.
DOI: 10.1016/j.molcata.2016.02.013
Google Scholar
[6]
A. Ye, W. Fan, Q. Zhang, W. Deng, Y. Wang, CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation, Catal. Sci. Technol. 2 (2012) 969–978.
DOI: 10.1039/c2cy20027a
Google Scholar
[7]
S.K. Apte, S.N. Garaje, S.S. Arbuj, B.B. Kale, J.O. Baeg, U.P. Mulik, S.D. Naik, D.P. Amalnerkar, S.W. Gosavi, A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation, J. Mater. Chem. 21 (2011) 19241.
DOI: 10.1039/c1jm14067a
Google Scholar
[8]
J.N. Heo, J. Shin, J.Y. Do, R. Kim, M. Kang, Reliable carbon dioxide photoreduction by a rational electron transfer cycle formed on a nanorod-shaped CdS/Fe2O3 heterojunction catalyst, Appl. Surf. Sci. 495 (2019) 143567.
DOI: 10.1016/j.apsusc.2019.143567
Google Scholar
[9]
N. Bao, L. Shen, T. Takata, K. Domen, Self-Templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light, Chem. Mater. 20 (2008) 110-117.
DOI: 10.1021/cm7029344
Google Scholar
[10]
L. Zou, H. Wang, X. Wang, High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-Scheme process, ACS Sustain. Chem. Eng. 5 (2016) 303-309.
DOI: 10.1021/acssuschemeng.6b01628
Google Scholar
[11]
Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/Graphene nanocomposite photocatalysts, Adv. Energy Mater. 5 (2015) 1500010.
DOI: 10.1002/aenm.201500010
Google Scholar
[12]
A.N. Kolodin, A.I. Bulavchenko, Contact angle and free surface energy of CdS films on polystyrene substrate, Appl. Surf. Sci. 463 (2019) 820-828.
DOI: 10.1016/j.apsusc.2018.08.176
Google Scholar
[13]
Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc. 133 (2011) 10878-10884.
DOI: 10.1021/ja2025454
Google Scholar
[14]
L. Zou, H. Wang, G. Yuan, X. Wang, Magnetically separable CdS/ZnFe2O4 composites with highly efficient photocatalytic activity and photostability under visible light, ACS Appl. Nano Mater. 1 (2018) 831-838.
DOI: 10.1021/acsanm.7b00243
Google Scholar
[15]
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts, Energy Environ. Sci. 11 (2018) 1362-1391.
DOI: 10.1039/c7ee03640j
Google Scholar
[16]
A.P. Singh, S. Kumar, M. Thirumal, Efficient charge transfer in heterostructures of CdS/NaTaO3 with improved visible-light-driven photocatalytic activity, ACS Omega. 4 (2019) 12175-12185.
DOI: 10.1021/acsomega.9b01133
Google Scholar
[17]
Y. Chen, G. Tian, W. Zhou, Y. Xiao, J. Wang, X. Zhang, H. Fu, Enhanced photogenerated carrier separation in CdS quantum dot sensitized ZnFe2O4/ZnIn2S4 nanosheet stereoscopic films for exceptional visible light photocatalytic H2 evolution performance, Nanoscale. 9 (2017) 5912-5921.
DOI: 10.1039/c7nr00155j
Google Scholar
[18]
Y. Lu, Y. Li, Y.Y. Wang, J.Y. Zhang, Two-photon induced NIR active core-shell structured WO3/CdS for enhanced solar light photocatalytic performance, Appl. Catal. B: Environ. 272 (2020) 118979.
DOI: 10.1016/j.apcatb.2020.118979
Google Scholar
[19]
L. Zhang, X. Fu, S. Meng, X. Jiang, J. Wang, S. Chen, Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light, J. Mater. Chem. A. 3 (2015) 23732-23742.
DOI: 10.1039/c5ta07459b
Google Scholar
[20]
A. Dumbrava, G. Prodan, D. Berger, M. Bica, Properties of pEG-capped CdS nanopowders synthesized under very mild conditions, Powder Technol. 270 (2015) 197-204.
DOI: 10.1016/j.powtec.2014.10.012
Google Scholar
[21]
J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, In situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst, Adv. Mater. 31 (2019) 1802981.
DOI: 10.1002/adma.201802981
Google Scholar
[22]
S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity, Appl. Catal. B: Environ. 243 (2019) 19-26.
DOI: 10.1016/j.apcatb.2018.10.019
Google Scholar
[23]
C. Li, T. Ahmed, M. Ma, T. Edvinsson, J. Zhu, A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties, Appl. Catal. B: Environ. 138-139 (2013) 175-183.
DOI: 10.1016/j.apcatb.2013.02.042
Google Scholar
[24]
S. Balachandran, M. Swaminathan, Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity, J. Phys. Chem. C. 116 (2012) 26306-26312.
DOI: 10.1021/jp306874z
Google Scholar
[25]
W. Guo, Z. Chen, C. Yang, T. Neumann, C. Kübel, W. Wenzel, A. Welle, W. Pfleging, O. Shekhah, C. Wöll, E. Redel, Bi2O3 nanoparticles encapsulated in surface mounted metal–organic framework thin films, Nanoscale. 8 (2016) 6468-6472.
DOI: 10.1039/c6nr00532b
Google Scholar
[26]
Q. Hao, R. Wang, H. Lu, C.a. Xie, W. Ao, D. Chen, C. Ma, W. Yao, Y. Zhu, One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity, Appl. Catal. B: Environ. 219 (2017) 63-72.
DOI: 10.1016/j.apcatb.2017.07.030
Google Scholar
[27]
L. Shan, G. Wang, D. Li, X. San, L. Liu, L. Dong, Z. Wu, Band alignment and enhanced photocatalytic activation of α/β-Bi2O3 heterojunctions via in situ phase transformation, Dalton Trans. 44 (2015) 7835-7843.
DOI: 10.1039/c5dt00621j
Google Scholar
[28]
J. Zhang, Z. Zhu, X. Feng, Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution, Chem-Eur. J. 20 (2014) 10632-10635.
DOI: 10.1002/chem.201402522
Google Scholar
[29]
Z. Pan, E. Han, J. Zheng, J. Lu, X. Wang, Y. Yin, G.I.N. Waterhouse, X. Wang, P. Li, Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p–n heterojunction CeO2/CuO/Cu catalyst, Nano-Micro. Lett. 12 (2020) 18.
DOI: 10.1007/s40820-019-0354-1
Google Scholar
[30]
S. Obregón, G. Amor, A. Vázquez, Electrophoretic deposition of photocatalytic materials, Adv. Colloid Interface Sci. 269 (2019) 236-255.
DOI: 10.1016/j.cis.2019.05.003
Google Scholar
[31]
R.C. Pawar, C.S. Lee, Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr(VI), Mater. Chem. Phys. 141 (2013) 686-693.
DOI: 10.1016/j.matchemphys.2013.05.062
Google Scholar
[32]
S. Obregon, G. Amor, A. Vazquez, Electrophoretic deposition of photocatalytic materials, Adv. Colloid Interface. Sci. 269 (2019) 236-255.
Google Scholar
[33]
R. Chauhan, A. Kumar, R.P. Chaudhary, Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles, Appl. Surf. Sci. 270 (2013) 655-660.
DOI: 10.1016/j.apsusc.2013.01.110
Google Scholar
[34]
S. Su, Q. Han, Z. Shen, X. Wang, J. Zhu, Partial decomposition of NaBiO3 to δ-Bi2O3/NaBiO3 and α-Bi2O3/NaBiO3 heterojunctions in aqueous HAc solution respectively with good adsorption ability and photocatalytic performance, Mater. Chem. Phys. 229 (2019) 6-14.
DOI: 10.1016/j.matchemphys.2019.02.068
Google Scholar
[35]
X. Chen, X. Chen, E. Yu, S. Cai, H. Jia, J. Chen, P. Liang, In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion, Chem. Eng. J. 344 (2018) 469-479.
DOI: 10.1016/j.cej.2018.03.091
Google Scholar
[36]
Y. Su, L. Zhang, W. Wang, Internal polar field enhanced H2 evolution of BiOIO3 nanoplates, Int. J. Hydrogen Energy 41 (2016) 10170-10177.
DOI: 10.1016/j.ijhydene.2016.04.236
Google Scholar
[37]
L. Shan, C. Lu, L. Dong, J. Suriyaprakash, Efficient facet regulation of BiVO4 and its photocatalytic motivation, J. Alloy Compd. 804 (2019) 385-391.
DOI: 10.1016/j.jallcom.2019.07.051
Google Scholar
[38]
J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, B. Kim, Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized raman single nanowire microscopy, Chem-Eur. J. 17 (2011) 1304-1309.
DOI: 10.1002/chem.201001684
Google Scholar
[39]
D. Majhi, P.K. Samal, K. Das, S.K. Gouda, Y.P. Bhoi, B.G. Mishra, α-NiS/Bi2O3 nanocomposites for enhanced photocatalytic degradation of tramadol, ACS Appl. Nano Mater. 2 (2019) 395-407.
DOI: 10.1021/acsanm.8b01974
Google Scholar
[40]
Y. Xie, C. Zhang, D. Wang, J. Lu, Y. Wang, J. Wang, L. Zhang, R. Zhang, Catalytic performance of a Bi2O3–Fe2O3 system in soot combustion, New J. Chem. 43 (2019) 15368-15374.
DOI: 10.1039/c9nj03419f
Google Scholar
[41]
H. Lin, L. Ding, Z. Pei, Y. Zhou, J. Long, W. Deng, X. Wang, Au deposited BiOCl with different facets: on determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity, Appl. Catal. B: Environ. 160 (2014) 98-105.
DOI: 10.1016/j.apcatb.2014.05.018
Google Scholar
[42]
J. Zhang, Y. Zhang, Y. Lei, C. Pan, Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study, Catal Sci Technol. 1 (2011) 273–278.
DOI: 10.1039/c0cy00051e
Google Scholar
[43]
L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Appl. Catal. A-Gen. 308 (2006) 105-110.
DOI: 10.1016/j.apcata.2006.04.016
Google Scholar
[44]
Y. Yan, Z. Zhou, Y. Cheng, L. Qiu, C. Gao, J. Zhou, Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification, J. Alloy Compd. 605 (2014) 102-108.
DOI: 10.1016/j.jallcom.2014.03.111
Google Scholar
[45]
G.N. Vayssilov, M. Mihaylov, P.S. Petkov, K.I. Hadjiivanov, K.M. Neyman, Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and Infrared spectroscopy Investigation, J. Phys Chem. C. 115 (2011) 23435-23454.
DOI: 10.1021/jp208050a
Google Scholar
[46]
C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, Z. Kang, Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting, Appl. Catal. B: Environ. 216 (2017) 114-121.
DOI: 10.1016/j.apcatb.2017.05.049
Google Scholar
[47]
C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers, J. Colloid Interface Sci. 333 (2009) 242-248.
DOI: 10.1016/j.jcis.2008.12.077
Google Scholar
[48]
C. Zhang, B. Liu, X. Cheng, Z. Guo, T. Zhuang, Z. Lv, A CdS@NiS reinforced concrete structure derived from nickel foam for efficient visible-light H2 production, Chem. Eng. J. 393 (2020) 124774.
DOI: 10.1016/j.cej.2020.124774
Google Scholar
[49]
J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol, Sci. Adv. 3 (2017) e1701290.
DOI: 10.1126/sciadv.1701290
Google Scholar
[50]
W. Ren, C. Wan, Z. Li, X. Liu, R. Zhang, X. Yang, D.J. Lee, Functional CdS nanocomposites recovered from biomineralization treatment of sulfate wastewater and its applications in the perspective of photocatalysis and electrochemistry, Sci. Total. Environ. 742 (2020) 140646.
DOI: 10.1016/j.scitotenv.2020.140646
Google Scholar
[51]
A. Charanpahari, S.S. Umare, R. Sasikala, Enhanced photodegradation of dyes on Bi2O3 microflakes: Effect of GeO2 addition on photocatalytic activity, Sep. Purif. Technol. 133 (2014) 438-442.
DOI: 10.1016/j.seppur.2014.05.035
Google Scholar
[52]
R. Gao, J. Wang, Z.-F. Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J.-J. Zou, Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading, Nat. Energy. 6 (2021) 614-623.
DOI: 10.1038/s41560-021-00826-5
Google Scholar
[53]
Z. Wang, R. Qi, D. Liu, X. Zhao, L. Huang, S. Chen, Z. Chen, M. Li, B. You, Y. Pang, B. Yu Xia, Exfoliated ultrathin ZnIn2S4 nanosheets with abundant Zinc vacancies for enhanced CO2 electroreduction to formate, ChemSusChem. 14 (2021) 852-859.
DOI: 10.1002/cssc.202002785
Google Scholar
[54]
L. Shan, J. Li, Z. Wu, L. Dong, H. Chen, D. Li, J. Suriyaprakash, X. Zhang, Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction, Chem. Eng. J. (2021) doi: https://doi.org/10.1016/j.cej.2021.131516.
DOI: 10.1016/j.cej.2021.131516
Google Scholar
[55]
X. Deng, Q. Zhang, E. Zhou, C. Ji, J. Huang, M. Shao, M. Ding, X. Xu, Morphology transformation of Cu2O sub-microstructures by Sn doping for enhanced photocatalytic properties, J. Alloy Compd. 649 (2015) 1124-1129.
DOI: 10.1016/j.jallcom.2015.07.124
Google Scholar
[56]
L. Shan, Y. Liu, J. Bi, J. Suriyaprakash, Z. Han, Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI, J. Alloy Compd. 721 (2017) 784-794.
DOI: 10.1016/j.jallcom.2017.06.041
Google Scholar
[57]
G. Yang, B. Yang, T. Xiao, Z. Yan, One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity, Appl. Surf. Sci. 283 (2013) 402-410.
DOI: 10.1016/j.apsusc.2013.06.122
Google Scholar
[58]
R. Wang, D. Xu, J. Liu, K. Li, H. Wang, Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light, Chem. Eng. J. 168 (2011) 455-460.
DOI: 10.1016/j.cej.2011.01.035
Google Scholar
[59]
L. An, G. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Cheng, Synthesis of CdS/ZnO nanocomposite and its enhanced photocatalytic activity in degradation of methyl orange, Russ. J. Phys. Chem. A. 89 (2015) 1878-1883.
DOI: 10.1134/s0036024415100180
Google Scholar
[60]
X. Liu, H. Deng, W. Yao, Q. Jiang, J. Shen, Preparation and photocatalytic activity of Y-doped Bi2O3, J. Alloy Compd. 651 (2015) 135-142.
Google Scholar
[61]
S. Yang, C. Chen, L. Liu, L. Zhu, X. Xu, Facile fabrication of micro-floriated AgBr/Bi2O3 as highly efficient visible-light photocatalyst, Mater. Res. Bull. 92 (2017) 29-38.
DOI: 10.1016/j.materresbull.2017.03.055
Google Scholar
[62]
Y. Liu, Y. Zhou, X. Zhou, X. Jin, B. Li, J. Liu, G. Chen, Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution, Chem. Eng. J. 407 (2021) 127180.
DOI: 10.1016/j.cej.2020.127180
Google Scholar
[63]
A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, Facile synthesis of a Z-Scheme ZnIn2S4/MoO3 heterojunction with enhanced photocatalytic activity under visible light irradiation, ACS Omega. 5 (2020) 8188-8199.
DOI: 10.1021/acsomega.0c00446
Google Scholar